Point (spatial)
   HOME

TheInfoList



OR:

In classical Euclidean geometry, a point is a primitive notion that models an exact location in space, and has no length, width, or thickness. In modern
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a point refers more generally to an element of some set called a space. Being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, that it must satisfy; for example, ''"there is exactly one
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
that passes through two different points"''.


Points in Euclidean geometry

Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects. Euclid originally defined the point as "that which has no part". In two-dimensional Euclidean space, a point is represented by an
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In con ...
(, ) of numbers, where the first number conventionally represents the
horizontal Horizontal may refer to: *Horizontal plane, in astronomy, geography, geometry and other sciences and contexts *Horizontal coordinate system, in astronomy *Horizontalism, in monetary circuit theory *Horizontalism, in sociology *Horizontal market, ...
and is often denoted by , and the second number conventionally represents the vertical and is often denoted by . This idea is easily generalized to three-dimensional Euclidean space, where a point is represented by an ordered triplet (, , ) with the additional third number representing depth and often denoted by . Further generalizations are represented by an ordered tuplet of terms, where is the dimension of the space in which the point is located. Many constructs within Euclidean geometry consist of an infinite collection of points that conform to certain axioms. This is usually represented by a set of points; As an example, a
line Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts ...
is an infinite set of points of the form \scriptstyle , where through and are constants and is the dimension of the space. Similar constructions exist that define the plane,
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
and other related concepts. A line segment consisting of only a single point is called a
degenerate Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to descr ...
line segment. In addition to defining points and constructs related to points, Euclid also postulated a key idea about points, that any two points can be connected by a straight line. This is easily confirmed under modern extensions of Euclidean geometry, and had lasting consequences at its introduction, allowing the construction of almost all the geometric concepts known at the time. However, Euclid's postulation of points was neither complete nor definitive, and he occasionally assumed facts about points that did not follow directly from his axioms, such as the ordering of points on the line or the existence of specific points. In spite of this, modern expansions of the system serve to remove these assumptions.


Dimension of a point

There are several inequivalent definitions of dimension in mathematics. In all of the common definitions, a point is 0-dimensional.


Vector space dimension

The dimension of a vector space is the maximum size of a linearly independent subset. In a vector space consisting of a single point (which must be the zero vector 0), there is no linearly independent subset. The zero vector is not itself linearly independent, because there is a non trivial linear combination making it zero: 1 \cdot \mathbf=\mathbf.


Topological dimension

The topological dimension of a topological space X is defined to be the minimum value of ''n'', such that every finite open cover \mathcal of X admits a finite open cover \mathcal of X which refines \mathcal in which no point is included in more than ''n''+1 elements. If no such minimal ''n'' exists, the space is said to be of infinite covering dimension. A point is zero-dimensional with respect to the covering dimension because every open cover of the space has a refinement consisting of a single open set.


Hausdorff dimension

Let ''X'' be a metric space. If ''S'' ⊂ ''X'' and ''d'' ∈ , ∞), the ''d''-dimensional Hausdorff content of ''S'' is the infimum of the set of numbers δ ≥ 0 such that there is some (indexed) collection of metric space">balls \ covering ''S'' with ''ri'' > 0 for each ''i'' ∈ ''I'' that satisfies \sum_ r_i^d<\delta . The Hausdorff dimension of ''X'' is defined by :\operatorname_(X):=\inf\. A point has Hausdorff dimension 0 because it can be covered by a single ball of arbitrarily small radius.


Geometry without points

Although the notion of a point is generally considered fundamental in mainstream geometry and topology, there are some systems that forgo it, e.g. noncommutative geometry and pointless topology. A "pointless" or "pointfree" space is defined not as a set (mathematics), set, but via some structure (C*-algebra, algebraic or complete Heyting algebra, logical respectively) which looks like a well-known function space on the set: an algebra of
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s or an
algebra of sets In mathematics, the algebra of sets, not to be confused with the mathematical structure of ''an'' algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the ...
respectively. More precisely, such structures generalize well-known spaces of functions in a way that the operation "take a value at this point" may not be defined. A further tradition starts from some books of
A. N. Whitehead Alfred North Whitehead (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He is best known as the defining figure of the philosophical school known as process philosophy, which today has found applicat ...
in which the notion of region is assumed as a primitive together with the one of ''inclusion'' or ''connection''.


Point masses and the Dirac delta function

Often in physics and mathematics, it is useful to think of a point as having non-zero mass or charge (this is especially common in classical electromagnetism, where electrons are idealized as points with non-zero charge). The Dirac delta function, or function, is (informally) a generalized function on the real number line that is zero everywhere except at zero, with an integral of one over the entire real line., p. 58 The delta function is sometimes thought of as an infinitely high, infinitely thin spike at the origin, with total area one under the spike, and physically represents an idealized point mass or point charge. It was introduced by theoretical physicist Paul Dirac. In the context of signal processing it is often referred to as the unit impulse symbol (or function). Its discrete analog is the Kronecker delta function which is usually defined on a finite domain and takes values 0 and 1.


See also

*
Accumulation point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contai ...
* Affine space * Boundary point * Critical point * Cusp * Foundations of geometry *
Position (geometry) In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s ...
* Point cloud * Point process * Point set registration * Pointwise * Singular point of a curve *
Whitehead point-free geometry In mathematics, point-free geometry is a geometry whose primitive ontological notion is ''region'' rather than point. Two axiomatic systems are set out below, one grounded in mereology, the other in mereotopology and known as ''connection theory' ...


References

* Clarke, Bowman, 1985,
Individuals and Points
" ''Notre Dame Journal of Formal Logic 26'': 61–75. * De Laguna, T., 1922, "Point, line and surface as sets of solids," ''The Journal of Philosophy 19'': 449–61. * Gerla, G., 1995,
Pointless Geometries
in Buekenhout, F., Kantor, W. eds., ''Handbook of incidence geometry: buildings and foundations''. North-Holland: 1015–31. * Whitehead, A. N., 1919. ''An Enquiry Concerning the Principles of Natural Knowledge''. Cambridge Univ. Press. 2nd ed., 1925. * Whitehead, A. N., 1920.
The Concept of Nature
'. Cambridge Univ. Press. 2004 paperback, Prometheus Books. Being the 1919 Tarner Lectures delivered at Trinity College. * Whitehead, A. N., 1979 (1929). '' Process and Reality''. Free Press.


External links

* * {{Authority control