HOME



picture info

Pointwise
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some Function (mathematics), function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined on functions by applying the operations to function values separately for each point in the domain of a function, domain of definition. Important Theory of relations, relations can also be defined pointwise. Pointwise operations Formal definition A binary operation on a set can be lifted pointwise to an operation on the set of all functions from to as follows: Given two functions and , define the function by Commonly, ''o'' and ''O'' are denoted by the same symbol. A similar definition is used for unary operations ''o'', and for operations of other arity. Examples The pointwise addition f+g of two functions f and g with the same domain and codomain is defined by: The pointwise product or pointwise mul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pointwise Convergence
In mathematics, pointwise convergence is one of Modes of convergence (annotated index), various senses in which a sequence of function (mathematics), functions can Limit (mathematics), converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the Real number, real or complex numbers or a metric space, for example. A sequence of Function (mathematics), functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) the limit of a sequence, limit of the sequence f_n(x) evaluated at each point x in the domain of f is equal to f(x), written as \forall x \in X, \lim_ f_n(x) = f(x). The function f is said to be the pointwise limit function of the \left(f_n\right). The definition easily generalizes from sequences to Net (mathematics), nets f_\bull ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pointwise Sum And Product Of Sin And Ln Function
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise. Pointwise operations Formal definition A binary operation on a set can be lifted pointwise to an operation on the set of all functions from to as follows: Given two functions and , define the function by Commonly, ''o'' and ''O'' are denoted by the same symbol. A similar definition is used for unary operations ''o'', and for operations of other arity. Examples The pointwise addition f+g of two functions f and g with the same domain and codomain is defined by: The pointwise product or pointwise multiplication is: The pointwise product with a scalar is usually ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists and is finite, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric space, metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating Zeno's paradoxes, paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon (person), Antiphon, Eudoxus of Cnidus, Eudoxus, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The term ''convolution'' refers to both the resulting function and to the process of computing it. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution f*g differs from cross-correlation f \star g only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter "M" first and "Y" last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be '' finite'', as in these examples, or '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Closure Operator
In mathematics, a closure operator on a Set (mathematics), set ''S'' is a Function (mathematics), function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families". A set together with a closure operator on it is sometimes called a closure space. Closure operators are also called "hull operators", which prevents confusion with the "closure operators" studied in point-set topology, topology. History E. H. Moore studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projection (order)
This is a glossary of some terms used in various branches of mathematics that are related to the fields of Order theory, order, Lattice (order), lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles: * Completeness (order theory), completeness properties of partial orders * Distributivity (order theory), distributivity laws of order theory In the following, partial orders will usually just be denoted by their carrier sets. As long as the intended meaning is clear from the context, \,\leq\, will suffice to denote the corresponding relational symbol, even without prior introduction. Furthermore, < will denote the strict order induced by \,\leq. __NOTOC__


A

* Acyclic. A binary relation is acyclic if it contains no "cycles": equivalently, its transitive closure is Antisymmetric relation, antisymmetric. * Adjoint. See ''G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kernel Operator
In mathematics, a closure operator on a set ''S'' is a function \operatorname: \mathcal(S)\rightarrow \mathcal(S) from the power set of ''S'' to itself that satisfies the following conditions for all sets X,Y\subseteq S : Closure operators are determined by their closed sets, i.e., by the sets of the form cl(''X''), since the closure cl(''X'') of a set ''X'' is the smallest closed set containing ''X''. Such families of "closed sets" are sometimes called closure systems or "Moore families". A set together with a closure operator on it is sometimes called a closure space. Closure operators are also called "hull operators", which prevents confusion with the "closure operators" studied in topology. History E. H. Moore studied closure operators in his 1910 ''Introduction to a form of general analysis'', whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + '' potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid (\mathbb, \times) of the natural numbers with multiplication, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]