mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
multiplication
Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, and division are defined and behave as the corresponding operations on rational and
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. A field is thus a fundamental
algebraic structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
which is widely used in
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
,
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, and many other areas of mathematics.
The best known fields are the field of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s, the field of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s and the field of
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
s, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. Most
cryptographic protocol
A cryptographic protocol is an abstract or concrete Communications protocol, protocol that performs a information security, security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol desc ...
s rely on
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s, i.e., fields with finitely many elements.
The theory of fields proves that
angle trisection
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and ...
and
squaring the circle
Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square (geometry), square with the area of a circle, area of a given circle by using only a finite number of steps with a ...
cannot be done with a
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
.
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
, devoted to understanding the symmetries of field extensions, provides an elegant proof of the Abel–Ruffini theorem that general quintic equations cannot be solved in radicals.
Fields serve as foundational notions in several mathematical domains. This includes different branches of
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the scalars for a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
, which is the standard general context for
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
. Number fields, the siblings of the field of rational numbers, are studied in depth in
number theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
. Function fields can help describe properties of geometric objects.
Definition
Informally, a field is a set, along with two operations defined on that set: an addition operation and a multiplication operation , both of which behave similarly as they do for
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s and
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s. This includes the existence of an
additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
for all elements and of a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
for every nonzero element . This allows the definition of the so-called ''inverse operations'', subtraction and division , as and .
Often the product is represented by juxtaposition, as .
binary operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation ...
s on called ''addition'' and ''multiplication''. A binary operation on is a mapping , that is, a correspondence that associates with each ordered pair of elements of a uniquely determined element of . The result of the addition of and is called the sum of and , and is denoted . Similarly, the result of the multiplication of and is called the product of and , and is denoted . These operations are required to satisfy the following properties, referred to as '' field axioms''.
These axioms are required to hold for all elements , , of the field :
* Associativity of addition and multiplication: , and .
* Commutativity of addition and multiplication: , and .
* Additive and
multiplicative identity
In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
: there exist two distinct elements and in such that and .
*
Additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
s: for every in , there exists an element in , denoted , called the ''additive inverse'' of , such that .
*
Multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
s: for every in , there exists an element in , denoted by or , called the ''multiplicative inverse'' of , such that .
* Distributivity of multiplication over addition: .
An equivalent, and more succinct, definition is: a field has two commutative operations, called addition and multiplication; it is a group under addition with as the additive identity; the nonzero elements form a group under multiplication with as the multiplicative identity; and multiplication distributes over addition.
Even more succinctly: a field is a
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
where and all nonzero elements are
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
under multiplication.
Alternative definition
Fields can also be defined in different, but equivalent ways. One can alternatively define a field by four binary operations (addition, subtraction, multiplication, and division) and their required properties.
Division by zero
In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
is, by definition, excluded. In order to avoid existential quantifiers, fields can be defined by two binary operations (addition and multiplication), two unary operations (yielding the additive and multiplicative inverses respectively), and two
nullary
In logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the ...
operations (the constants and ). These operations are then subject to the conditions above. Avoiding existential quantifiers is important in constructive mathematics and
computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computer, computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both computer hardware, hardware and softw ...
. One may equivalently define a field by the same two binary operations, one unary operation (the multiplicative inverse), and two (not necessarily distinct) constants and , since and .
Examples
Rational numbers
Rational numbers have been widely used a long time before the elaboration of the concept of field.
They are numbers that can be written as fractions
, where and are
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, and . The additive inverse of such a fraction is , and the multiplicative inverse (provided that ) is , which can be seen as follows:
:
The abstractly required field axioms reduce to standard properties of rational numbers. For example, the law of distributivity can be proven as follows:
:
Real and complex numbers
The
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s , with the usual operations of addition and multiplication, also form a field. The
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s consist of expressions
: with real,
where is the imaginary unit, i.e., a (non-real) number satisfying .
Addition and multiplication of real numbers are defined in such a way that expressions of this type satisfy all field axioms and thus hold for . For example, the distributive law enforces
:
It is immediate that this is again an expression of the above type, and so the complex numbers form a field. Complex numbers can be geometrically represented as points in the plane, with Cartesian coordinates given by the real numbers of their describing expression, or as the arrows from the origin to these points, specified by their length and an angle enclosed with some distinct direction. Addition then corresponds to combining the arrows to the intuitive parallelogram (adding the Cartesian coordinates), and the multiplication is – less intuitively – combining rotating and scaling of the arrows (adding the angles and multiplying the lengths). The fields of real and complex numbers are used throughout mathematics, physics, engineering, statistics, and many other scientific disciplines.
Constructible numbers
In antiquity, several geometric problems concerned the (in)feasibility of constructing certain numbers with
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
. For example, it was unknown to the Greeks that it is, in general, impossible to trisect a given angle in this way. These problems can be settled using the field of constructible numbers. Real constructible numbers are, by definition, lengths of line segments that can be constructed from the points 0 and 1 in finitely many steps using only compass and straightedge. These numbers, endowed with the field operations of real numbers, restricted to the constructible numbers, form a field, which properly includes the field of rational numbers. The illustration shows the construction of
square root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
s of constructible numbers, not necessarily contained within . Using the labeling in the illustration, construct the segments , , and a semicircle over (center at the
midpoint
In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.
Formula
The midpoint of a segment in ''n''-dim ...
), which intersects the
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
line through in a point , at a distance of exactly from when has length one.
Not all real numbers are constructible. It can be shown that is not a constructible number, which implies that it is impossible to construct with compass and straightedge the length of the side of a cube with volume 2, another problem posed by the ancient Greeks.
A field with four elements
In addition to familiar number systems such as the rationals, there are other, less immediate examples of fields. The following example is a field consisting of four elements called , , , and . The notation is chosen such that plays the role of the additive identity element (denoted 0 in the axioms above), and is the multiplicative identity (denoted in the axioms above). The field axioms can be verified by using some more field theory, or by direct computation. For example,
: , which equals , as required by the distributivity.
This field is called a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
or Galois field with four elements, and is denoted or . The
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
consisting of and (highlighted in red in the tables at the right) is also a field, known as the '' binary field'' or .
Elementary notions
In this section, denotes an arbitrary field and and are arbitrary elements of .
Consequences of the definition
One has and . In particular, one may deduce the additive inverse of every element as soon as one knows .
If then or must be , since, if , then
. This means that every field is an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
.
In addition, the following properties are true for any elements and :
:
:
:
:
: if
Additive and multiplicative groups of a field
The axioms of a field imply that it is an abelian group under addition. This group is called the additive group of the field, and is sometimes denoted by when denoting it simply as could be confusing.
Similarly, the ''nonzero'' elements of form an abelian group under multiplication, called the
multiplicative group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
*the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
, and denoted by or just , or .
A field may thus be defined as set equipped with two operations denoted as an addition and a multiplication such that is an abelian group under addition, is an abelian group under multiplication (where 0 is the identity element of the addition), and multiplication is distributive over addition. Some elementary statements about fields can therefore be obtained by applying general facts of groups. For example, the additive and multiplicative inverses and are uniquely determined by .
The requirement is imposed by convention to exclude the trivial ring, which consists of a single element; this guides any choice of the axioms that define fields.
Every finite
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
of the multiplicative group of a field is cyclic (see ').
Characteristic
In addition to the multiplication of two elements of , it is possible to define the product of an arbitrary element of by a positive
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
to be the -fold sum
: (which is an element of .)
If there is no positive integer such that
: ,
then is said to have characteristic . For example, the field of rational numbers has characteristic 0 since no positive integer is zero. Otherwise, if there ''is'' a positive integer satisfying this equation, the smallest such positive integer can be shown to be a
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
. It is usually denoted by and the field is said to have characteristic then.
For example, the field has characteristic since (in the notation of the above addition table) .
If has characteristic , then for all in . This implies that
: ,
since all other
binomial coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
s appearing in the binomial formula are divisible by . Here, ( factors) is the th power, i.e., the -fold product of the element . Therefore, the Frobenius map
:
is compatible with the addition in (and also with the multiplication), and is therefore a field homomorphism. The existence of this homomorphism makes fields in characteristic quite different from fields of characteristic .
Subfields and prime fields
A '' subfield'' of a field is a subset of that is a field with respect to the field operations of . Equivalently is a subset of that contains , and is closed under addition, multiplication, additive inverse and multiplicative inverse of a nonzero element. This means that , that for all both and are in , and that for all in , both and are in .
Field homomorphisms are maps between two fields such that , , and , where and are arbitrary elements of . All field homomorphisms are injective. If is also surjective, it is called an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
(or the fields and are called isomorphic).
A field is called a prime field if it has no proper (i.e., strictly smaller) subfields. Any field contains a prime field. If the characteristic of is (a prime number), the prime field is isomorphic to the finite field introduced below. Otherwise the prime field is isomorphic to .
Finite fields
''Finite fields'' (also called ''Galois fields'') are fields with finitely many elements, whose number is also referred to as the order of the field. The above introductory example is a field with four elements. Its subfield is the smallest field, because by definition a field has at least two distinct elements, and .
The simplest finite fields, with prime order, are most directly accessible using
modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
. For a fixed positive integer , arithmetic "modulo " means to work with the numbers
:
The addition and multiplication on this set are done by performing the operation in question in the set of integers, dividing by and taking the remainder as result. This construction yields a field precisely if is a
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
. For example, taking the prime results in the above-mentioned field . For and more generally, for any
composite number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
(i.e., any number which can be expressed as a product of two strictly smaller natural numbers), is not a field: the product of two non-zero elements is zero since in , which, as was explained above, prevents from being a field. The field with elements ( being prime) constructed in this way is usually denoted by .
Every finite field has elements, where is prime and . This statement holds since may be viewed as a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over its prime field. The
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
of this vector space is necessarily finite, say , which implies the asserted statement.
A field with elements can be constructed as the splitting field of the
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
: .
Such a splitting field is an extension of in which the polynomial has zeros. This means has as many zeros as possible since the degree of is . For , it can be checked case by case using the above multiplication table that all four elements of satisfy the equation , so they are zeros of . By contrast, in , has only two zeros (namely and ), so does not split into linear factors in this smaller field. Elaborating further on basic field-theoretic notions, it can be shown that two finite fields with the same order are isomorphic. It is thus customary to speak of ''the'' finite field with elements, denoted by or .
History
Historically, three algebraic disciplines led to the concept of a field: the question of solving polynomial equations,
algebraic number theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
, and
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
. A first step towards the notion of a field was made in 1770 by
Joseph-Louis Lagrange
Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangiacubic polynomial in the expression
:
(with being a third
root of unity
In mathematics, a root of unity is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory ...
) only yields two values. This way, Lagrange conceptually explained the classical solution method of Scipione del Ferro and François Viète, which proceeds by reducing a cubic equation for an unknown to a quadratic equation for . Together with a similar observation for equations of degree 4, Lagrange thus linked what eventually became the concept of fields and the concept of groups. Vandermonde, also in 1770, and to a fuller extent,
Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
, in his '' Disquisitiones Arithmeticae'' (1801), studied the equation
:
for a prime and, again using modern language, the resulting cyclic Galois group. Gauss deduced that a regular -gon can be constructed if . Building on Lagrange's work, Paolo Ruffini claimed (1799) that quintic equations (polynomial equations of degree ) cannot be solved algebraically; however, his arguments were flawed. These gaps were filled by Niels Henrik Abel in 1824.
Évariste Galois
Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by Nth root, ...
, in 1832, devised necessary and sufficient criteria for a polynomial equation to be algebraically solvable, thus establishing in effect what is known as
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
today. Both Abel and Galois worked with what is today called an
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
, but conceived neither an explicit notion of a field, nor of a group.
In 1871 Richard Dedekind introduced, for a set of real or complex numbers that is closed under the four arithmetic operations, the German word ''Körper'', which means "body" or "corpus" (to suggest an organically closed entity). The English term "field" was introduced by .
In 1881
Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker
as having said, ...
defined what he called a ''domain of rationality'', which is a field of rational fractions in modern terms. Kronecker's notion did not cover the field of all algebraic numbers (which is a field in Dedekind's sense), but on the other hand was more abstract than Dedekind's in that it made no specific assumption on the nature of the elements of a field. Kronecker interpreted a field such as abstractly as the rational function field . Prior to this, examples of transcendental numbers were known since Joseph Liouville's work in 1844, until Charles Hermite (1873) and Ferdinand von Lindemann (1882) proved the transcendence of and , respectively.
The first clear definition of an abstract field is due to . In particular, Heinrich Martin Weber's notion included the field . Giuseppe Veronese (1891) studied the field of formal power series, which led to introduce the field of -adic numbers. synthesized the knowledge of abstract field theory accumulated so far. He axiomatically studied the properties of fields and defined many important field-theoretic concepts. The majority of the theorems mentioned in the sections
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent.
Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number t ...
redeveloped Galois theory from 1928 through 1942, eliminating the dependency on the primitive element theorem.
Constructing fields
Constructing fields from rings
A
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is a set that is equipped with an addition and multiplication operation and satisfies all the axioms of a field, except for the existence of multiplicative inverses . For example, the integers form a commutative ring, but not a field: the reciprocal of an integer is not itself an integer, unless .
In the hierarchy of algebraic structures fields can be characterized as the commutative rings in which every nonzero element is a unit (which means every element is invertible). Similarly, fields are the commutative rings with precisely two distinct ideals, and . Fields are also precisely the commutative rings in which is the only prime ideal.
Given a commutative ring , there are two ways to construct a field related to , i.e., two ways of modifying such that all nonzero elements become invertible: forming the field of fractions, and forming residue fields. The field of fractions of is , the rationals, while the residue fields of are the finite fields .
Field of fractions
Given an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
, its
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
is built with the fractions of two elements of exactly as Q is constructed from the integers. More precisely, the elements of are the fractions where and are in , and . Two fractions and are equal if and only if . The operation on the fractions work exactly as for rational numbers. For example,
:
It is straightforward to show that, if the ring is an integral domain, the set of the fractions form a field.
The field of the rational fractions over a field (or an integral domain) is the field of fractions of the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
. The field of
Laurent series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansio ...
:
over a field is the field of fractions of the ring of formal power series (in which ). Since any Laurent series is a fraction of a power series divided by a power of (as opposed to an arbitrary power series), the representation of fractions is less important in this situation, though.
Residue fields
In addition to the field of fractions, which embeds injectively into a field, a field can be obtained from a commutative ring by means of a surjective map onto a field . Any field obtained in this way is a quotient , where is a maximal ideal of . If has only one maximal ideal , this field is called the residue field of .
The ideal generated by a single polynomial in the polynomial ring (over a field ) is maximal if and only if is irreducible in , i.e., if cannot be expressed as the product of two polynomials in of smaller degree. This yields a field
:
This field contains an element (namely the residue class of ) which satisfies the equation
: .
For example, is obtained from by adjoining the imaginary unit symbol , which satisfies , where . Moreover, is irreducible over , which implies that the map that sends a polynomial to yields an isomorphism
:
Constructing fields within a bigger field
Fields can be constructed inside a given bigger container field. Suppose given a field , and a field containing as a subfield. For any element of , there is a smallest subfield of containing and , called the subfield of ''F'' generated by and denoted . The passage from to is referred to by '' adjoining an element'' to . More generally, for a subset , there is a minimal subfield of containing and , denoted by .
The compositum of two subfields and of some field is the smallest subfield of containing both and . The compositum can be used to construct the biggest subfield of satisfying a certain property, for example the biggest subfield of , which is, in the language introduced below, algebraic over .
Field extensions
The notion of a subfield can also be regarded from the opposite point of view, by referring to being a '' field extension'' (or just extension) of , denoted by
: ,
and read " over ".
A basic datum of a field extension is its degree , i.e., the dimension of as an -vector space. It satisfies the formula
: .
Extensions whose degree is finite are referred to as finite extensions. The extensions and are of degree , whereas is an infinite extension.
Algebraic extensions
A pivotal notion in the study of field extensions are algebraic elements. An element is ''algebraic'' over if it is a
root
In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
of a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
with
coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s in , that is, if it satisfies a polynomial equation
: ,
with in , and .
For example, the imaginary unit in is algebraic over , and even over , since it satisfies the equation
: .
A field extension in which every element of is algebraic over is called an algebraic extension. Any finite extension is necessarily algebraic, as can be deduced from the above multiplicativity formula.
The subfield generated by an element , as above, is an algebraic extension of if and only if is an algebraic element. That is to say, if is algebraic, all other elements of are necessarily algebraic as well. Moreover, the degree of the extension , i.e., the dimension of as an -vector space, equals the minimal degree such that there is a polynomial equation involving , as above. If this degree is , then the elements of have the form
:
For example, the field of Gaussian rationals is the subfield of consisting of all numbers of the form where both and are rational numbers: summands of the form (and similarly for higher exponents) do not have to be considered here, since can be simplified to .
Transcendence bases
The above-mentioned field of rational fractions , where is an indeterminate, is not an algebraic extension of since there is no polynomial equation with coefficients in whose zero is . Elements, such as , which are not algebraic are called transcendental. Informally speaking, the indeterminate and its powers do not interact with elements of . A similar construction can be carried out with a set of indeterminates, instead of just one.
Once again, the field extension discussed above is a key example: if is not algebraic (i.e., is not a
root
In vascular plants, the roots are the plant organ, organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often bel ...
of a polynomial with coefficients in ), then is isomorphic to . This isomorphism is obtained by substituting to in rational fractions.
A subset of a field is a transcendence basis if it is algebraically independent (do not satisfy any polynomial relations) over and if is an algebraic extension of . Any field extension has a transcendence basis. Thus, field extensions can be split into ones of the form ( purely transcendental extensions) and algebraic extensions.
Closure operations
A field is algebraically closed if it does not have any strictly bigger algebraic extensions or, equivalently, if any polynomial equation
: , with coefficients ,
has a solution . By the fundamental theorem of algebra, is algebraically closed, i.e., ''any'' polynomial equation with complex coefficients has a complex solution. The rational and the real numbers are ''not'' algebraically closed since the equation
:
does not have any rational or real solution. A field containing is called an '' algebraic closure'' of if it is algebraic over (roughly speaking, not too big compared to ) and is algebraically closed (big enough to contain solutions of all polynomial equations).
By the above, is an algebraic closure of . The situation that the algebraic closure is a finite extension of the field is quite special: by the Artin–Schreier theorem, the degree of this extension is necessarily , and is elementarily equivalent to . Such fields are also known as
real closed field
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.
Def ...
s.
Any field has an algebraic closure, which is moreover unique up to (non-unique) isomorphism. It is commonly referred to as ''the'' algebraic closure and denoted . For example, the algebraic closure of is called the field of algebraic numbers. The field is usually rather implicit since its construction requires the ultrafilter lemma, a set-theoretic axiom that is weaker than the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. In this regard, the algebraic closure of , is exceptionally simple. It is the union of the finite fields containing (the ones of order ). For any algebraically closed field of characteristic , the algebraic closure of the field of
Laurent series
In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansio ...
is the field of Puiseux series, obtained by adjoining roots of .
Fields with additional structure
Since fields are ubiquitous in mathematics and beyond, several refinements of the concept have been adapted to the needs of particular mathematical areas.
Ordered fields
A field ''F'' is called an ''ordered field'' if any two elements can be compared, so that and whenever and . For example, the real numbers form an ordered field, with the usual ordering . The Artin–Schreier theorem states that a field can be ordered if and only if it is a
formally real field
In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field.
Alternative definitions
The definition given above ...
, which means that any quadratic equation
:
only has the solution . The set of all possible orders on a fixed field is isomorphic to the set of ring homomorphisms from the Witt ring of
quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong t ...
s over , to .
An Archimedean field is an ordered field such that for each element there exists a finite expression
:
whose value is greater than that element, that is, there are no infinite elements. Equivalently, the field contains no infinitesimals (elements smaller than all rational numbers); or, yet equivalent, the field is isomorphic to a subfield of .
An ordered field is Dedekind-complete if all
upper bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of .
Dually, a lower bound or minorant of is defined to be an element of that is less ...
s, lower bounds (see '' Dedekind cut'') and limits, which should exist, do exist. More formally, each bounded subset of is required to have a least upper bound. Any complete field is necessarily Archimedean, since in any non-Archimedean field there is neither a greatest infinitesimal nor a least positive rational, whence the sequence , every element of which is greater than every infinitesimal, has no limit.
Since every proper subfield of the reals also contains such gaps, is the unique complete ordered field, up to isomorphism. Several foundational results in
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
follow directly from this characterization of the reals.
The hyperreals form an ordered field that is not Archimedean. It is an extension of the reals obtained by including infinite and infinitesimal numbers. These are larger, respectively smaller than any real number. The hyperreals form the foundational basis of non-standard analysis.
Topological fields
Another refinement of the notion of a field is a topological field, in which the set is a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
, such that all operations of the field (addition, multiplication, the maps and ) are continuous maps with respect to the topology of the space.
The topology of all the fields discussed below is induced from a metric, i.e., a function
:
that measures a ''distance'' between any two elements of .
The completion of is another field in which, informally speaking, the "gaps" in the original field are filled, if there are any. For example, any
irrational number
In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, ...
, such as , is a "gap" in the rationals in the sense that it is a real number that can be approximated arbitrarily closely by rational numbers , in the sense that distance of and given by the
absolute value
In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
is as small as desired.
The following table lists some examples of this construction. The fourth column shows an example of a zero
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
, i.e., a sequence whose limit (for ) is zero.
The field is used in number theory and -adic analysis. The algebraic closure carries a unique norm extending the one on , but is not complete. The completion of this algebraic closure, however, is algebraically closed. Because of its rough analogy to the complex numbers, it is sometimes called the field of complex ''p''-adic numbers and is denoted by .
Local fields
The following topological fields are called '' local fields'':
* finite extensions of (local fields of characteristic zero)
* finite extensions of , the field of Laurent series over (local fields of characteristic ).
These two types of local fields share some fundamental similarities. In this relation, the elements and (referred to as uniformizer) correspond to each other. The first manifestation of this is at an elementary level: the elements of both fields can be expressed as power series in the uniformizer, with coefficients in . (However, since the addition in is done using carrying, which is not the case in , these fields are not isomorphic.) The following facts show that this superficial similarity goes much deeper:
* Any first-order statement that is true for almost all is also true for almost all . An application of this is the Ax–Kochen theorem describing zeros of homogeneous polynomials in .
* Tamely ramified extensions of both fields are in bijection to one another.
* Adjoining arbitrary -power roots of (in ), respectively of (in ), yields (infinite) extensions of these fields known as perfectoid fields. Strikingly, the Galois groups of these two fields are isomorphic, which is the first glimpse of a remarkable parallel between these two fields:
Differential fields
Differential fields are fields equipped with a derivation, i.e., allow to take derivatives of elements in the field. For example, the field , together with the standard derivative of polynomials forms a differential field. These fields are central to differential Galois theory, a variant of Galois theory dealing with linear differential equations.
symmetry
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
in the arithmetic operations of addition and multiplication. An important notion in this area is that of finiteGalois extensions , which are, by definition, those that are separable and normal. The primitive element theorem shows that finite separable extensions are necessarily
simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by John ...
, i.e., of the form
: ,
where is an irreducible polynomial (as above). For such an extension, being normal and separable means that all zeros of are contained in and that has only simple zeros. The latter condition is always satisfied if has characteristic .
For a finite Galois extension, the Galois group is the group of field automorphisms of that are trivial on (i.e., the
bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
s that preserve addition and multiplication and that send elements of to themselves). The importance of this group stems from the
fundamental theorem of Galois theory
In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.
In its most bas ...
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
s of and the set of intermediate extensions of the extension . By means of this correspondence, group-theoretic properties translate into facts about fields. For example, if the Galois group of a Galois extension as above is not solvable (cannot be built from abelian groups), then the zeros of ''cannot'' be expressed in terms of addition, multiplication, and radicals, i.e., expressions involving