Omnitruncated 8-simplex Honeycomb
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, an omnitruncation of a
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
is a
simple polytope In geometry, a -dimensional simple polytope is a -dimensional polytope each of whose vertices are adjacent to exactly edges (also facets). The vertex figure of a simple -polytope is a -simplex. Simple polytopes are topologically dual to s ...
of the same dimension, having a vertex for each
flag A flag is a piece of textile, fabric (most often rectangular) with distinctive colours and design. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design employed, and fla ...
of the original polytope and a
facet Facets () are flat faces on geometric shapes. The organization of naturally occurring facets was key to early developments in crystallography, since they reflect the underlying symmetry of the crystal structure. Gemstones commonly have facets cu ...
for each face of any dimension of the original polytope. Omnitruncation is the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a nu ...
operation to
barycentric subdivision In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension to simplicial complexes is a canonical method to refining them. Therefore, the barycentric subdivision is an important tool ...
. Because the barycentric subdivision of any polytope can be realized as another polytope, the same is true for the omnitruncation of any polytope. When omnitruncation is applied to a
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitive group action, transitively on its flag (geometry), flags, thus giving it the highest degree of symmetry. In particular, all its elements or -faces (for all , w ...
(or
honeycomb A honeycomb is a mass of Triangular prismatic honeycomb#Hexagonal prismatic honeycomb, hexagonal prismatic cells built from beeswax by honey bees in their beehive, nests to contain their brood (eggs, larvae, and pupae) and stores of honey and pol ...
) it can be described geometrically as a
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
that creates a maximum number of facets. It is represented in a
Coxeter–Dynkin diagram In geometry, a Harold Scott MacDonald Coxeter, Coxeter–Eugene Dynkin, Dynkin diagram (or Coxeter diagram, Coxeter graph) is a Graph (discrete mathematics), graph with numerically labeled edges (called branches) representing a Coxeter group or ...
with all nodes ringed. It is a ''shortcut'' term which has a different meaning in progressively-higher-dimensional polytopes: * Uniform polytope truncation operators ** For
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
s: An ordinary truncation, t_\ = t\ = \. *** Coxeter-Dynkin diagram ** For
uniform polyhedra In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular (if also fac ...
(3-polytopes): A cantitruncation, t_\ = tr\. (Application of both
cantellation In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tiling ...
and truncation operations) *** Coxeter-Dynkin diagram: ** For uniform polychora: A runcicantitruncation, t_\. (Application of
runcination In geometry, runcination is an operation that cuts a regular polytope (or honeycomb) simultaneously along the faces, edges, and vertices, creating new facets in place of the original face, edge, and vertex centers. It is a higher order truncatio ...
, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** For uniform polytera (5-polytopes): A steriruncicantitruncation, t0,1,2,3,4. t_\. (Application of
sterication In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform Facet (mathematics), facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the sam ...
, runcination, cantellation, and truncation operations) *** Coxeter-Dynkin diagram: , , ** For uniform n-polytopes: t_\.


See also

*
Expansion (geometry) In geometry, expansion is a polytope operation where Facet (mathematics), facets are separated and moved radially apart, and new facets are formed at separated elements (Vertex (geometry), vertices, Edge (geometry), edges, etc.). Equivalently t ...
*
Omnitruncated polyhedron In geometry, an Omnitruncation, omnitruncated polyhedron is a truncation (geometry), truncated quasiregular polyhedron. When they are Alternation (geometry), alternated, they produce the snub polyhedron, snub polyhedra. All omnitruncated polyhedra ...


References


Further reading

* Coxeter, H.S.M. ''
Regular Polytopes ''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a th ...
'', (3rd edition, 1973), Dover edition, (pp. 145–154 Chapter 8: Truncation, p 210 Expansion) * Norman Johnson ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966


External links

* {{Polyhedron_operators Polyhedra Uniform polyhedra