Neuronal Lineage Marker
   HOME

TheInfoList



OR:

A neuronal lineage marker is an endogenous tag that is expressed in different cells along
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). This occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells ( ...
and differentiated cells such as
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
. It allows detection and identification of cells by using different techniques. A neuronal lineage marker can be either DNA, mRNA or RNA expressed in a cell of interest. It can also be a
protein tag Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or a ...
, as a partial protein, a protein or an
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although e ...
that discriminates between different cell types or different states of a common cell. An ideal marker is specific to a given cell type in normal conditions and/or during injury. Cell markers are very valuable tools for examining the function of cells in normal conditions as well as during disease. The discovery of various proteins specific to certain cells led to the production of cell-type-specific antibodies that have been used to identify cells. The techniques used for its detection can be
immunohistochemistry Immunohistochemistry is a form of immunostaining. It involves the process of selectively identifying antigens in cells and tissue, by exploiting the principle of Antibody, antibodies binding specifically to antigens in biological tissues. Alber ...
,
immunocytochemistry Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows vis ...
, methods that utilize transcriptional modulators and site-specific recombinases to label specific neuronal population,
in situ hybridization ''In situ'' hybridization (ISH) is a type of Hybridisation (molecular biology), hybridization that uses a labeled complementary DNA, RNA or modified nucleic acid strand (i.e., a Hybridization probe, probe) to localize a specific DNA or RNA seq ...
or
fluorescence in situ hybridization Fluorescence ''in situ'' hybridization (FISH) is a molecular cytogenetic technique that uses fluorescent probes that bind to only particular parts of a nucleic acid sequence with a high degree of sequence complementarity. It was developed by ...
(FISH). A neuronal lineage marker can be a neuronal antigen that is recognized by an autoantibody for example Hu, which is highly restricted to neuronal nuclei. By immunohistochemistry, anti-Hu stains the nuclei of neurons. To localize mRNA in brain tissue, one can use a fragment of DNA or RNA as a neuronal lineage marker, a
hybridization probe In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA, usually 15–10000 nucleotides long, which can be radioactively or fluorescently labeled. HPs can be used to detect the presence of nucleotide sequences in analyzed ...
that detects the presence of nucleotide sequences that are complementary to the sequence in the probe. This technique is known as
in situ hybridization ''In situ'' hybridization (ISH) is a type of Hybridisation (molecular biology), hybridization that uses a labeled complementary DNA, RNA or modified nucleic acid strand (i.e., a Hybridization probe, probe) to localize a specific DNA or RNA seq ...
. Its application have been carried out in all different tissues, but particularly useful in
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, ...
. Using this technique, it is possible to locate gene expression to specific cell types in specific regions and observe how changes in this distribution occur throughout the development and correlate with the behavioral manipulations. Although
immunohistochemistry Immunohistochemistry is a form of immunostaining. It involves the process of selectively identifying antigens in cells and tissue, by exploiting the principle of Antibody, antibodies binding specifically to antigens in biological tissues. Alber ...
is the staple methodology for identifying neuronal cell types, since it is relatively low in cost and a wide range of immunohistochemical markers are available to help distinguish the phenotype of cells in the brain, sometimes it is time-consuming to produce a good antibody. Therefore, one of the most convenient methods for the rapid assessment of the expression of a cloned ion channel could be in situ hybridization histochemistry. After cells are isolated from tissue or differentiated from
pluripotent Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum ...
precursors, the resulting population needs to be characterized to confirm whether the target population has been obtained. Depending on the goal of a particular study, one can use
neural stem cells Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
markers, neural
progenitor cell A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only diffe ...
markers,
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
markers or PNS neuronal markers.


History

The study of the nervous system dates back to ancient Egypt but only in the ninetieth century it became more detailed. With the invention of the microscope and a technique of staining developed by
Camillo Golgi Camillo Golgi (; 7 July 184321 January 1926) was an Italian biologist and pathologist known for his works on the central nervous system. He studied medicine at the University of Pavia (where he later spent most of his professional career) bet ...
, it was possible to study individual neurons. This scientist started to impregnate nervous tissue with metal, as silver. The reaction consists in fixing particles of silver chromate to the neurilemma, and resulted in a stark black deposit in the soma, axon and dendrites of the neuron. Thus, it was possible to identify different types of neurons, as
Golgi Cell In neuroscience, Golgi cells are the most abundant inhibitory interneurons found within the granular layer of the cerebellum. Golgi cells can be found in the granular layer at various layers. The Golgi cell is essential for controlling the activi ...
, Golgi I and Golgi II. In 1885 there was a German medical researcher called
Franz Nissl Franz Alexander Nissl (9 September 1860, in Frankenthal – 11 August 1919, in Munich) was a German psychiatrist and medical researcher. He was a noted neuropathologist. Early life Nissl was born in Frankenthal to Theodor Nissl and Maria Haas. ...
who developed another staining technique now known by Nissl staining. This technique is slightly different from Golgi staining since it stains the cell body and the endoplasmic reticulum. In 1887, a Spanish scientist called
Santiago Ramon y Cajal Santiago (, ; ), also known as Santiago de Chile (), is the capital and largest city of Chile and one of the largest cities in the Americas. It is located in the country's central valley and is the center of the Santiago Metropolitan Region, ...
learned the staining technique with Golgi and started his famous work of
neuroanatomy Neuroanatomy is the study of the structure and organization of the nervous system. In contrast to animals with radial symmetry, whose nervous system consists of a distributed network of cells, animals with bilateral symmetry have segregated, defi ...
. With this technique he made an extensive study of several areas of the brain and in different species. He also described very precisely the
purkinje cells Purkinje cells or Purkinje neurons, named for Czech physiologist Jan Evangelista Purkyně who identified them in 1837, are a unique type of prominent, large neuron located in the cerebellar cortex of the brain. With their flask-shaped cell bo ...
, the chick
cerebellum The cerebellum (: cerebella or cerebellums; Latin for 'little brain') is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or eve ...
and the neuronal circuit of the rodent
hippocampus The hippocampus (: hippocampi; via Latin from Ancient Greek, Greek , 'seahorse'), also hippocampus proper, is a major component of the brain of humans and many other vertebrates. In the human brain the hippocampus, the dentate gyrus, and the ...
. In 1941 Dr.
Albert Coons Albert Hewett Coons (June 28, 1912 – September 30, 1978) was an American physician, pathologist, and immunologist. He was the first person to conceptualize and develop immunofluorescent techniques for labeling antibodies in the early 1940 ...
used for the first time a revolutionary technique that uses the principle of
antibodies An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that caus ...
binding specifically to
antigens In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. An ...
in the tissues. He created an immunoflorescent technique for labelling the antibodies. This technique continues to be widely used in neuroscience studies for identifying different structures. The most important neural markers used nowadays are the GFAP, Nestin,
NeuroD NeuroD, also called Beta2, is a basic helix-loop-helix transcription factor expressed in certain parts of brain, beta pancreatic cells and enteroendocrine cells. It is involved in the differentiation of nervous system and development of pancreas. ...
antibodies and others. For the past years there are still creating new neural markers for
immunocytochemistry Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows vis ...
or/and
immunohistochemistry Immunohistochemistry is a form of immunostaining. It involves the process of selectively identifying antigens in cells and tissue, by exploiting the principle of Antibody, antibodies binding specifically to antigens in biological tissues. Alber ...
. In 1953
Heinrich Klüver Heinrich Klüver (; May 25, 1897 – February 8, 1979) was a German-American biological psychologist and philosopher born in Holstein. After having served in the Imperial German Army during World War I, he studied at both the University of Ham ...
invented a new staining technique called, Luxol Fast Blue stain or LFB, and with this technique it's possible to detect
demyelination A demyelinating disease refers to any disease affecting the nervous system where the myelin sheath surrounding neurons is damaged. This damage disrupts the transmission of signals through the affected nerves, resulting in a decrease in their con ...
in the central nervous system.
Myelin sheath Myelin Sheath ( ) is a lipid-rich material that in most vertebrates surrounds the axons of neurons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. The myelinated axon can be lik ...
will be stained blue, but other structures will be stained as well. The next revolutionary technique was invented in 1969 by an American scientist called Joseph G. Gall. This technique is called
in situ Hybridization ''In situ'' hybridization (ISH) is a type of Hybridisation (molecular biology), hybridization that uses a labeled complementary DNA, RNA or modified nucleic acid strand (i.e., a Hybridization probe, probe) to localize a specific DNA or RNA seq ...
and it is used in a large variety of studies but mainly used in developmental biology. With this technique it is possible to mark some genes expressed in determined areas of the animal. In
neurobiology Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, ...
, it's very useful for understanding the formation of the nervous system.


Techniques


In situ hybridization

This is one of the most powerful techniques to mark cells. This method consists of hybridizing a labeled
complementary DNA In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed (via reverse transcriptase) from an RNA (e.g., messenger RNA or microRNA). cDNA exists in both single-stranded and double-stranded forms and in both natural and engin ...
or
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
strand to a specific DNA or RNA in the tissue. By doing this hybridization we will be able to reveal the location of a specific
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
, giving us information about the physiological process of organization, regulation and function of the genes. Using this technique we can now know what are the genes and proteins that are behind a certain process, like the formation of the
neural crest The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, ...
, or a specific behavior; and what is the location of that same genes. We can also see how changes in the distribution of these genes can affect the development of a tissue, and correlate it with behavioral manipulations. Some examples are the use of, digoxigenin- or fluorophore-conjugated oligo- nucleotide probes, for the detection of localized mRNAs in dendrites, spines, axons, and
growth cones Growth may refer to: Biology *Auxology, the study of all aspects of human physical growth *Bacterial growth *Cell growth *Growth hormone, a peptide hormone that stimulates growth *Human development (biology) *Plant growth *Secondary growth, growt ...
of cultured neurons; or digoxigenin-labeled RNA probes and fluorescence tyramide amplification for the detection of less abundant mRNAs localized to dendrites in vivo. These examples use FISH (Fluorescent in situ hybridization). With this technique we can understand the physiological processes and neurological diseases.


Immunohistochemistry

Immunohistochemistry is a technique that uses
antibodies An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that caus ...
with fluorescent staining tags that target a specific
antigen In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
present in a certain protein. This high specificity allows us to localize the peptidergic and classical transmitter compounds, their synthetic enzymes and other cell specific antigen in neuronal tissue. An example of the application of this technique in neuroscience is the
immunolabeling Immunolabeling is a biochemical process that enables the detection and localization of an antigen to a particular site within a cell, tissue, or organ. Antigens are organic molecules, usually proteins, capable of binding to an antibody. These an ...
of antigens like NGF-Inducible Large External glycoprotein ( NILE-GF),
choline acetyltransferase Choline acetyltransferase (commonly abbreviated as ChAT, but sometimes CAT) is a transferase enzyme responsible for the synthesis of the neurotransmitter acetylcholine. ChAT catalyzes the transfer of an acetyl group from the coenzyme acetyl-Co ...
,
parvalbumin Parvalbumin (PV) is a calcium-binding protein with low molecular weight (typically 9–11 kDa). In humans, it is encoded by the ''PVALB'' gene. It is a member of the albumin family; it is named for its size (''parv-'', from Latin ' which means " ...
, and
neurofilament protein Neurofilaments (NF) are classed as type IV intermediate filaments found in the cytoplasm of neurons. They are protein polymers measuring 10 nm in diameter and many micrometers in length. Together with microtubules (~25 nm) and mi ...
. All of these antigens are present in specific neuronal cell types. With these we can define anatomical circuits with a high degree of resolution, and understand the role of some proteins and cells in the nervous system, as well as the location of that same proteins and cells. Although this is a very potent technique there are some drawbacks. The procedure has a nonquantifiable nature and has the occurrence of both false positives and false negatives.


Immunocytochemistry

Immunocytochemistry uses the same method that immunohistochemistry, but with the difference that this technique is used in isolated cells in culture, and the other is in tissues. The results are the same but with more resolution, once we are looking to one cell only.


Lineage markers


Neural stem cells markers

Neural stem cells Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
are an example of somatic stem cell found in various tissues, both during development and in the adult. They have two fundamental characteristics: they are self-renewing and upon terminal division and differentiation, they can give rise to the full range of cells classes within the relevant tissue. Hence, a neural stem cell can give rise to another neural stem cell, or to any of the differentiated cell types found in the central and peripheral nervous systems (inhibitory and excitatory
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
,
astrocytes Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of end ...
and
oligodendrocytes Oligodendrocytes (), also known as oligodendroglia, are a type of neuroglia whose main function is to provide the myelin sheath to neuronal axons in the central nervous system (CNS). Myelination gives metabolic support to, and insulates the axon ...
). The standard method of isolating neural stem cells in vitro is with the neurosphere culture system, the method originally used to identify NSCs. After some proliferation, the cells are either induced to differentiate by withdrawing the
mitogens A mitogen is a small bioactive protein or peptide that induces a cell to begin cell division, or enhances the rate of division (mitosis). Mitogenesis is the induction (triggering) of mitosis, typically via a mitogen. The cell cycle Mitogens ac ...
or by exposing the cells to another factor that induces some of the cells to develop into different lineages. Cellular fates are analysed by staining with antibodies directed against antigens specific for astrocytes, oligodendrocytes, and neurons. In some cases, cells are plated at low density and monitored to determine if a single cell can give rise to the three phenotypes. Immunomagnetic cell separation strategies using antibodies directed against cell surface markers present on stem cells, progenitors and mature CNS cells have been applied to the study of NSCs. Other non-immunological methods have been used to identify populations of cells from normal and tumorigenic CNS tissues, which demonstrate some of the in vitro properties of stem cells, including high
aldehyde dehydrogenase Aldehyde dehydrogenases () are a group of enzymes that catalyse the oxidation of aldehydes. They convert aldehydes (R–C(=O)) to carboxylic acids (R–C(=O)). The oxygen comes from a water molecule. To date, nineteen ALDH genes have ...
(ALDH) enzyme activity. ALDH cells from embryonic rat and mouse CNS have been isolated and shown to have the ability to generate neurospheres, neurons, astrocytes and oligodendrocytes in vitro, as well as neurons in vivo when transplanted into the adult mouse cerebral cortex. Once a stem cell divides asymmetrically, the more mature progenitor is born and migrates to regions of differentiation. As the progenitor migrates, it matures further until it reaches a site where it stops and either becomes quiescent or fully differentiates into a functioning cell. The major obstacle to identifying and discovering markers that define a stem cell is that the most primitive cells are probably in a
quiescent Quiescence (/kwiˈɛsəns/) is a state of quietness or inactivity. It may refer to: * Quiescence search, in game tree searching (adversarial search) in artificial intelligence, a quiescent state is one in which a game is considered stable and unl ...
state and do not express many unique antigens. Thus, as with other fields like
haematopoiesis Haematopoiesis (; ; also hematopoiesis in American English, sometimes h(a)emopoiesis) is the formation of blood cellular components. All cellular blood components are derived from haematopoietic stem cells. In a healthy adult human, roughly ten ...
, a combination of positive and negative markers will be required to better define the central nervous system stem cell. Nonetheless, changes in the expression levels of specific molecules can be used to indicate the presence of neural stem cells in studies focused on further differentiation toward specific neural lineages. Usual markers used for neural stem cells include Nestin and SOX2. Although Nestin it is expressed predominantly in stem cells of the central nervous system (CNS), its expression is absent from nearly all mature CNS cells, thus it is an efficient marker for neural stem cells. During
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). This occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells ( ...
, Sox2 is expressed throughout developing cells in the neural tube as well as in proliferating CNS progenitors, hence is thought to be centrally important for neural stem cell proliferation and differentiation. In addition to intracellular molecules, products are available to study proteins which are expressed at the cell surface, including
ABCG2 ATP-binding cassette super-family G member 2 is a protein that in humans is encoded by the ''ABCG2'' gene. ABCG2 has also been designated as CDw338 (cluster of differentiation w338). ABCG2 is a translocation protein used to actively pump drugs ...
, FGF R4, and Frizzled-9.


Differentiation markers

The differentiation of neural stem cells is controlled, in a context-dependent manner, by intrinsic factors and extracellular signalling molecules that act as positive or negative regulators that can be used as markers.


Neural progenitor markers

A neural progenitor cell is distinct from a neural stem cell since it is incapable of continuous self-renewal and usually has the capacity to give rise to only one class of differentiated progeny. They are tripotent cells which can give rise to neurons, astrocytes and oligodendrocytes. An oligodendroglial progenitor cell, for example, gives rise to oligodendrocytes until its mitotic capacity is exhausted. Some neural progenitor markers are capable of tracking cells as they undergo expansion and differentiation from rosettes to neurons. The neural rosette is the developmental signature of neuroprogenitors in cultures of differentiating embryonic stem cells; rosettes are radial arrangements of columnar cells that express many of the proteins expressed in neuroepithelial cells in the neural tube. It has been shown that cells within rosettes express multiple cell markers, including among others Nestin,
NCAM Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discover ...
and Musashi-1, a RNA-binding protein that is expressed in proliferating neural stems cells. Neuroepithelial progenitors (NEP) are responsible for neurogenesis in the neural tube and also give rise to two other types of neural progenitor cell,
radial glia Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ol ...
and basal progenitors. Radial glia are the dominant progenitor cell type in the developing brain whereas basal progenitors are specifically located at the
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zon ...
(SVZ) in the developing
telencephalon The cerebrum (: cerebra), telencephalon or endbrain is the largest part of the brain, containing the cerebral cortex (of the two cerebral hemispheres) as well as several subcortical structures, including the hippocampus, basal ganglia, and olf ...
. Although functional studies of radial glia are increasing, it is difficult to distinguish them from neuroprogenitors and astrocytes. Like neuroprogenitors, radial glia express intermediate filament proteins nestin as well as the transcription factor PAX6 that is expressed in some neuroprogenitors in the ventral half of the neural tube. Radial glia also express proteins characteristic of astrocytes, including the widely used glial fibrillary acidic protein ( GFAP), among others. Cytological markers that might be unique to radial glia include modified forms of nestin identified by the RC1 and RC2 antibodies that recognize the murine antigens.


Neuron markers

Markers can detect neurons in different stages of development from nuclear, cytoplasmic, membrane or perisynaptic products present in neurons. It is also possible to label specifically
cholinergic Cholinergic agents are compounds which mimic the action of acetylcholine and/or butyrylcholine. In general, the word " choline" describes the various quaternary ammonium salts containing the ''N'',''N'',''N''-trimethylethanolammonium cation ...
,
dopaminergic Dopaminergic means "related to dopamine" (literally, "working on dopamine"), a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain. Dopaminergic pathways, Dopaminergic brain pathways facil ...
,
serotonergic A serotonergic substance, medication, or receptor protein is one that affects neurotransmission pathways that involve serotonin, as follows: * Serotonergic drugs ** Serotonin receptor agonists ** Serotonin receptor antagonists ** Serotonin reupta ...
,
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter gamma-aminobutyric acid (GABA). For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic ...
or
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonist ...
neurons. Pan neuron markers have multiple targets (somatic, nuclear, dendritic, spine and axonal proteins) and consequently label across all parts of the neuron. It is used to study neuronal morphology, although there are specific markers that label particular regions of the neuron.
Doublecortin Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the ''DCX'' gene. Function Doublecortin (DCX) is a microtubule-associated protein expressed by neuronal precursor cell ...
(DCX) is a microtubule-associated protein that is widely expressed in the soma and leading processes of migrating neurons and in the axons of differentiation neurons. Its expression is downregulated with maturation Neuron-specific Class III β-tubulin (TuJ1) is present in newly generated immature postmitotic neurons and differentiated neurons and in some mitotically active neuronal precursors. Microtubule-associated protein 2 (MAP-2) is a cytoskeletal protein. Its expression is weak in neuronal precursors but it increases during neuron development process. In general, its expression is confined to neurons and reactive astrocytes.
Neuron specific enolase Gamma-enolase, also known as enolase 2 (ENO2) or neuron specific enolase (NSE), is an enzyme that in humans is encoded by the ''ENO2'' gene. Gamma-enolase is a phosphopyruvate hydratase. Gamma-enolase is one of the three enolase isoenzymes foun ...
(NSE), also called as gamma-enolase or enolase 2, is a cytosolic protein that is expressed in mature neurons. NSE levels increase along the neuron development reaching higher level in later stages. It can be expressed in glial cells during oligodendrocyte differentiation with the same levels that have been found in neuron culture, but is repressed when cells become mature. In pathological conditions was also reported that glial neoplasms and reactive glial cells expressed this marker.
Calretinin Calretinin, also known as calbindin 2 (formerly 29 kDa calbindin), is a calcium-binding protein involved in calcium signaling. In humans, the calretinin protein is encoded by the ''CALB2'' gene. Function This gene encodes an intracellular ...
is widely distributed in different neuronal populations of vertebrate retina, being a valuable marker for immature postmitotic neurons. Neuronal Nuclei antigen (
NeuN NeuN (Fox-3, Rbfox3, or Hexaribonucleotide Binding Protein-3), a protein which is a homologue to the protein product of a sex-determining gene in ''Caenorhabditis elegans'', is a neuronal cell nucleus, nuclear antigen that is commonly used as ...
) or Fox-3 is a nuclear protein present in postmitotic cell, at the point of differentiation into mature cells. It can be used to detect almost all neuronal cell types except Purkinje cells, olfactory bulb mitral cells, retinal photoreceptor and dopaminergic neurons in the
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra a ...
. Calbindin is expressed by cerebellar Purkinje cells and granule cells of the hippocampus. The reorganization and migration of calbindin-stained Purkinje neurons in rat cerebellum after peripheral nerve injury suggests that calbindin may be a marker for immature post-mitotic neurons, similar to calretinin.
Tyrosine hydroxylase Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). It does so using molecular oxygen (O2), as well as iron (Fe2+) and ...
(TH) is an enzyme involved in the synthesis of
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
and
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic compound, organic chemical in the catecholamine family that functions in the brain and human body, body as a hormone, neurotransmitter and neuromodulator. The ...
. Generally, it is used as a marker for dopaminergic neurons, but it can also be found in some forebrain neurons which make
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic compound, organic chemical in the catecholamine family that functions in the brain and human body, body as a hormone, neurotransmitter and neuromodulator. The ...
(which is the product of dopamine and the enzyme dopamine β-hydroxylase).
Choline Acetyltransferase Choline acetyltransferase (commonly abbreviated as ChAT, but sometimes CAT) is a transferase enzyme responsible for the synthesis of the neurotransmitter acetylcholine. ChAT catalyzes the transfer of an acetyl group from the coenzyme acetyl-Co ...
(ChAT) is expressed in cholinergic neurons of both the CNS and PNS. In the CNS, ChAT is expressed in motor neurons and pre-ganglionic autonomic neurons of the spinal cord, a subset of neurons in the
neostriatum The striatum (: striata) or corpus striatum is a cluster of interconnected nuclei that make up the largest structure of the subcortical basal ganglia. The striatum is a critical component of the motor and reward systems; receives glutamaterg ...
and in the
basal forebrain Part of the human brain, the basal forebrain structures are located in the forebrain to the front of and below the striatum. They include the ventral basal ganglia (including nucleus accumbens and ventral pallidum), nucleus basalis, diagonal ba ...
. On the other hand, in PNS it is present in a small group of sympathetic neurons and in all parasympathetic neurons.
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
is a mature neuronal marker expressed in GABAergic interneurons (inhibitor neurons which are generally interneurons in the brain). GAD65/67 are two enzymes involved in GABA synthesis by GABAergic interneurons.
Amyloid precursor protein Amyloid-beta precursor protein (APP) is an integral membrane protein expressed in many biological tissue, tissues and concentrated in the synapses of neurons. It functions as a cell surface receptor and has been implicated as a regulator of s ...
(APP), the central protein in Alzheimer's Disease, is expressed differently during neuron differentiation. The expression of APP isoforms 695 and 714 is up-regulated in well-differentiated post-mitotic neuronal cells, while APP isoform 770 is down-regulated. These dynamics provide valuable insights into the differentiation state of neurons, aiding in the identification and study of neuronal development and maturation stages.


Clinical research

Neuronal lineage markers can be used in clinical research to identify diseased cells and/or in repair process. Since selective degeneration of functional neurons is associated with the pathogenesis of
neurodegenerative disorders A neurodegenerative disease is caused by the progressive loss of neurons, in the process known as neurodegeneration. Neuronal damage may also ultimately result in their death. Neurodegenerative diseases include amyotrophic lateral sclerosis, mul ...
, such as degeneration of midbrain dopaminergic neurons in
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a neurodegenerative disease primarily of the central nervous system, affecting both motor system, motor and non-motor systems. Symptoms typically develop gradually and non-motor issues become ...
, forebrain cholinergic neurons in
Alzheimer's disease Alzheimer's disease (AD) is a neurodegenerative disease and the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems wit ...
and cortical GABAergic neurons in
schizophrenia Schizophrenia () is a mental disorder characterized variously by hallucinations (typically, Auditory hallucination#Schizophrenia, hearing voices), delusions, thought disorder, disorganized thinking and behavior, and Reduced affect display, f ...
, markers of neuronal cell phenotype are of particular interest because of their utility in understanding pathology of clinical disease. There are two key markers in these studies:
choline acetyltransferase Choline acetyltransferase (commonly abbreviated as ChAT, but sometimes CAT) is a transferase enzyme responsible for the synthesis of the neurotransmitter acetylcholine. ChAT catalyzes the transfer of an acetyl group from the coenzyme acetyl-Co ...
and
tyrosine hydroxylase Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). It does so using molecular oxygen (O2), as well as iron (Fe2+) and ...
.
Choline acetyltransferase Choline acetyltransferase (commonly abbreviated as ChAT, but sometimes CAT) is a transferase enzyme responsible for the synthesis of the neurotransmitter acetylcholine. ChAT catalyzes the transfer of an acetyl group from the coenzyme acetyl-Co ...
(ChAT) is an enzyme responsible for catalyzing the synthesis of acetylcholine, and is expressed in the majority of cholinergic neurons. Hence, ChAT immunoreactivity is used to detect cognitive decline in several neurodegenerative disorders. In motor regions, sensory cortex and in the basal forebrain these immunolabeling has been applied to evaluate disruptions in cholinergic neurons of the ChAT fiber network and also for overall morphology. The Tyrosine hydroxylase (TH) immunolabeling has been very useful for Parkinson's disease investigation. It is used to determine the quantity of dopaminergic cell loss in Parkinson's patients.


Examples of neuronal lineage markers


References

{{reflist, 2 Neurons Genetics