HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a generalized permutation matrix (or monomial matrix) is a
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
with the same nonzero pattern as a
permutation matrix In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. ...
, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is :\begin 0 & 0 & 3 & 0\\ 0 & -7 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \sqrt2\end.


Structure

An
invertible matrix In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
''A'' is a generalized permutation matrix
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it can be written as a product of an invertible
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
''D'' and an (implicitly
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
)
permutation matrix In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permutation of elements. ...
''P'': i.e., :A = DP.


Group structure

The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of ''n'' × ''n'' generalized permutation matrices with entries in a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''F'' forms a
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
of the
general linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
GL(''n'', ''F''), in which the group of nonsingular diagonal matrices Δ(''n'', ''F'') forms a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
. Indeed, over all fields except
GF(2) (also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field with two elements. is the Field (mathematics), field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity ...
, the generalized permutation matrices are the
normalizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
of the diagonal matrices, meaning that the generalized permutation matrices are the ''largest'' subgroup of GL(''n'', ''F'') in which diagonal matrices are normal. The abstract group of generalized permutation matrices is the
wreath product In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used ...
of ''F''× and ''S''''n''. Concretely, this means that it is the
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' sem ...
of Δ(''n'', ''F'') by the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
''S''''n'': :''S''''n'' ⋉ Δ(''n'', ''F''), where ''S''''n'' acts by permuting coordinates and the diagonal matrices Δ(''n'', ''F'') are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the ''n''-fold product (''F''×)''n''. To be precise, the generalized permutation matrices are a (faithful)
linear representation Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
of this abstract wreath product: a realization of the abstract group as a subgroup of matrices.


Subgroups

* The subgroup where all entries are 1 is exactly the
permutation matrices In mathematics, particularly in Matrix (mathematics), matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An permutation matrix can represent a permu ...
, which is isomorphic to the symmetric group. * The subgroup where all entries are ±1 is the signed permutation matrices, which is the
hyperoctahedral group A hyperoctahedral group is a type of mathematical Group (mathematics), group that arises as the symmetry group, group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young (mathematician), Alfred Young in 1930. Groups ...
. * The subgroup where the entries are ''m''th
roots of unity In mathematics, a root of unity is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group char ...
\mu_m is isomorphic to a generalized symmetric group. * The subgroup of diagonal matrices is abelian, normal, and a maximal abelian subgroup. The
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...
is the symmetric group, and this construction is in fact the
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections t ...
of the general linear group: the diagonal matrices are a
maximal torus In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefor ...
in the general linear group (and are their own
centralizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
), the generalized permutation matrices are the normalizer of this torus, and the quotient, N(T)/Z(T) = N(T)/T \cong S_n is the Weyl group.


Properties

* If a nonsingular matrix and its inverse are both nonnegative matrices (i.e. matrices with nonnegative entries), then the matrix is a generalized permutation matrix. * The determinant of a generalized permutation matrix is given by \det(G)=\det(P)\cdot \det(D)=\operatorname(\pi)\cdot d_\cdot \ldots \cdot d_, where \operatorname(\pi) is the
sign A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or me ...
of the
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
\pi associated with P and d_,\ldots ,d_ are the diagonal elements of D.


Generalizations

One can generalize further by allowing the entries to lie in a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, rather than in a field. In that case if the non-zero entries are required to be
units Unit may refer to: General measurement * Unit of measurement, a definite magnitude of a physical quantity, defined and adopted by convention or by law **International System of Units (SI), modern form of the metric system **English units, histo ...
in the ring, one again obtains a group. On the other hand, if the non-zero entries are only required to be non-zero, but not necessarily invertible, this set of matrices forms a
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
instead. One may also schematically allow the non-zero entries to lie in a group ''G,'' with the understanding that matrix multiplication will only involve multiplying a single pair of group elements, not "adding" group elements. This is an
abuse of notation In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors an ...
, since element of matrices being multiplied must allow multiplication and addition, but is suggestive notion for the (formally correct) abstract group G \wr S_n (the wreath product of the group ''G'' by the symmetric group).


Signed permutation group

A signed permutation matrix is a generalized permutation matrix whose nonzero entries are ±1, and are the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
generalized permutation matrices with integer inverse.


Properties

* It is the
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
B_n, and has
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
2^n n!. * It is the symmetry group of the
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
and (dually) of the
cross-polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, staurotope, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a reg ...
. * Its
index Index (: indexes or indices) may refer to: Arts, entertainment, and media Fictional entities * Index (''A Certain Magical Index''), a character in the light novel series ''A Certain Magical Index'' * The Index, an item on the Halo Array in the ...
2 subgroup of matrices with determinant equal to their underlying (unsigned) permutation is the Coxeter group D_n and is the symmetry group of the
demihypercube In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hype ...
. * It is a subgroup of the
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
.


Applications


Monomial representations

Monomial matrices occur in
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
in the context of monomial representations. A monomial representation of a group ''G'' is a linear representation of ''G'' (here ''F'' is the defining field of the representation) such that the
image An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
''ρ''(''G'') is a subgroup of the group of monomial matrices.


References

* {{Matrix classes Matrices (mathematics) Permutations Sparse matrices