Overview
Although the process of meiosis is related to the more general cell division process ofHistory
Meiosis was discovered and described for the first time in''We propose to apply the terms Maiosis or Maiotic phase to cover the whole series of nuclear changes included in the two divisions that were designated as Heterotype and Homotype byFlemming Flemming is a surname and a male given name referring, like the more common '' Fleming'', to an inhabitant (or descendant thereof) of Flanders,transliterating Greek.
Phases
Meiosis is divided intomeiosis I Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one co ...andmeiosis II Meiosis () is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one cop ...which are further divided into Karyokinesis I, Cytokinesis I, Karyokinesis II, and Cytokinesis II, respectively. The preparatory steps that lead up to meiosis are identical in pattern and name to interphase of the mitotic cell cycle.Interphase Interphase is the active portion of the cell cycle that includes the G1, S, and G2 phases, where the cell grows, replicates its DNA, and prepares for mitosis, respectively. Interphase was formerly called the "resting phase," but the cell i ...is divided into three phases: * Growth 1 (G1) phase: In this very active phase, the cell synthesizes its vast array of proteins, including the enzymes and structural proteins it will need for growth. In G1, each of the chromosomes consists of a single linear molecule of DNA. * Synthesis (S) phase: The genetic material is replicated; each of the cell's chromosomes duplicates to become two identicalsister chromatid A sister chromatid refers to the identical copies ( chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the du ...s attached at a centromere. This replication does not change theploidy Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Here ''sets of chromosomes'' refers to the number of maternal and paternal chromosome copies, ...of the cell since the centromere number remains the same. The identical sister chromatids have not yet condensed into the densely packaged chromosomes visible with the light microscope. This will take place during prophase I in meiosis. * Growth 2 (G2) phase: G2 phase as seen before mitosis is not present in meiosis. Meiotic prophase corresponds most closely to the G2 phase of the mitotic cell cycle. Interphase is followed by meiosis I and then meiosis II. Meiosis I separates replicated homologous chromosomes, each still made up of two sister chromatids, into two daughter cells, thus reducing the chromosome number by half. During meiosis II, sister chromatids decouple, and the resultant daughter chromosomes are segregated into four daughter cells. For diploid organisms, the daughter cells resulting from meiosis are haploid and contain only one copy of each chromosome. In some species, cells enter a resting phase known asinterkinesis Interkinesis or interphase II is a period of rest that cell (biology), cells of some species enter during meiosis between meiosis I and meiosis II. No DNA replication occurs during interkinesis; however, replication does occur during the interphas ...between meiosis I and meiosis II. Meiosis I and II are each divided intoprophase Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin retic ...,metaphase Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). These chromosomes, carrying genetic information, alig ...,anaphase Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ..., andtelophase Telophase () is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed. As chromosomes reach the cell poles, ...stages, similar in purpose to their analogous subphases in the mitotic cell cycle. Therefore, meiosis includes the stages of meiosis I (prophase I, metaphase I, anaphase I, telophase I) and meiosis II (prophase II, metaphase II, anaphase II, telophase II). During meiosis, specific genes are more highly transcribed. In addition to strong meiotic stage-specific expression ofmRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ..., there are also pervasive translational controls (e.g. selective usage of preformed mRNA), regulating the ultimate meiotic stage-specific protein expression of genes during meiosis. Thus, both transcriptional and translational controls determine the broad restructuring of meiotic cells needed to carry out meiosis.
Meiosis I
Meiosis I segregateshomologous chromosome Homologous chromosomes or homologs are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during meiosis. Homologs have the same genes in the same locus (genetics), loci, where they provide points along e ...s, which are joined as tetrads (2n, 4c), producing two haploid cells (n chromosomes, 23 in humans) which each contain chromatid pairs (1n, 2c). Because the ploidy is reduced from diploid to haploid, meiosis I is referred to as a ''reductional division''. Meiosis II is an ''equational division'' analogous to mitosis, in which the sister chromatids are segregated, creating four haploid daughter cells (1n, 1c).![]()
Prophase I
Prophase I is by far the longest phase of meiosis (lasting 13 out of 14 days in mice). During prophase I, homologous maternal and paternal chromosomes pair,synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ..., and exchange genetic information (byhomologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...), forming at least one crossover per chromosome. These crossovers become visible as chiasmata (plural; singular chiasma). This process facilitates stable pairing between homologous chromosomes and hence enables accurate segregation of the chromosomes at the first meiotic division. The paired and replicated chromosomes are called bivalents (two chromosomes) or tetrads (fourchromatids A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chrom ...), with one chromosome coming from each parent. Prophase I is divided into a series of substages which are named according to the appearance of chromosomes.
= Leptotene
= The first stage of prophase I is the ''leptotene'' stage, also known as ''leptonema'', from Greek words meaning "thin threads". In this stage of prophase I, individual chromosomes—each consisting of two replicated sister chromatids—become "individualized" to form visible strands within the nucleus. The chromosomes each form a linear array of loops mediated bycohesin Cohesin is a protein complex that mediates Establishment of sister chromatid cohesion, sister chromatid cohesion, homologous recombination, and Topologically associating domain, DNA looping. Cohesin is formed of SMC3, SMC1A, SMC1, RAD21, SCC1 an ..., and the lateral elements of thesynaptonemal complex The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during prophase I during meiosis in eukaryotes ...assemble forming an "axial element" from which the loops emanate. Recombination is initiated in this stage by the enzymeSPO11 Spo11 is a protein that in humans is encoded by the ''SPO11'' gene. Spo11, in a complex with mTopVIB, creates double strand breaks to initiate meiotic recombination. Its active site contains a tyrosine which ligates and dissociates with DNA to p ...which creates programmed double strand breaks (around 300 per meiosis in mice). This process generates single stranded DNA filaments coated byRAD51 DNA repair protein RAD51 homolog 1 is a protein encoded by the gene ''RAD51''. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to t ...and DMC1 which invade the homologous chromosomes, forming inter-axis bridges, and resulting in the pairing/co-alignment of homologues (to a distance of ~400 nm in mice).
=Zygotene
= Leptotene is followed by the ''zygotene'' stage, also known as ''zygonema'', from Greek words meaning "paired threads", which in some organisms is also called the bouquet stage because of the way the telomeres cluster at one end of the nucleus. In this stage the homologous chromosomes become much more closely (~100 nm) and stably paired (a process called synapsis) mediated by the installation of the transverse and central elements of thesynaptonemal complex The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during prophase I during meiosis in eukaryotes .... Synapsis is thought to occur in a zipper-like fashion starting from a recombination nodule. The paired chromosomes are called bivalent or tetrad chromosomes.
=Pachytene
= The ''pachytene'' stage ( ), also known as ''pachynema'', from Greek words meaning "thick threads". is the stage at which all autosomal chromosomes have synapsed. In this stage homologous recombination, including chromosomal crossover (crossing over), is completed through the repair of the double strand breaks formed in leptotene. Most breaks are repaired without forming crossovers resulting ingene conversion Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. Gene conversion can be either allelic, meaning that one allele of the same gene replaces another .... However, a subset of breaks (at least one per chromosome) form crossovers between non-sister (homologous) chromosomes resulting in the exchange of genetic information. The exchange of information between the homologous chromatids results in a recombination of information; each chromosome has the complete set of information it had before, and there are no gaps formed as a result of the process. Because the chromosomes cannot be distinguished in the synaptonemal complex, the actual act of crossing over is not perceivable through an ordinary light microscope, and chiasmata are not visible until the next stage.
=Diplotene
= During the ''diplotene'' stage, also known as ''diplonema'', from Greek words meaning "two threads", thesynaptonemal complex The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during prophase I during meiosis in eukaryotes ...disassembles and homologous chromosomes separate from one another a little. However, the homologous chromosomes of each bivalent remain tightly bound at chiasmata, the regions where crossing-over occurred. The chiasmata remain on the chromosomes until they are severed at the transition to anaphase I to allow homologous chromosomes to move to opposite poles of the cell. In human fetaloogenesis Oogenesis () or ovogenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated before birth during embryonic devel ..., all developing oocytes develop to this stage and are arrested in prophase I before birth. This suspended state is referred to as the ''dictyotene stage'' or dictyate. It lasts until meiosis is resumed to prepare the oocyte for ovulation, which happens at puberty or even later.
=Diakinesis
= Chromosomes condense further during the ''diakinesis'' stage, from Greek words meaning "moving through". This is the first point in meiosis where the four parts of the tetrads are actually visible. Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resemblesprometaphase Prometaphase is the phase of mitosis following prophase and preceding metaphase in eukaryotic somatic cells. In prometaphase, the nuclear membrane breaks apart into numerous "membrane vesicles," and the chromosomes inside form protein structure ...of mitosis; thenucleoli The nucleolus (; : nucleoli ) is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis. The nucleolus also participates in the formation of signal recognition particles and plays a ro ...disappear, thenuclear membrane The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer polar membrane, membranes that in eukaryotic cells surround the Cell nucleus, nucleus, which encloses the genome, genetic material. The nuclear envelope con ...disintegrates into vesicles, and the meiotic spindle begins to form.
=Meiotic spindle formation
= Unlike mitotic cells, human and mouse oocytes do not havecentrosome In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progre ...s to produce the meiotic spindle. In mice, approximately 80 MicroTubule Organizing Centers (MTOCs) form a sphere in the ooplasm and begin to nucleate microtubules that reach out towards chromosomes, attaching to the chromosomes at thekinetochore A kinetochore (, ) is a flared oblique-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers, which can be thought of as the ropes pulling chromosomes apart, attach during cell division to .... Over time, the MTOCs merge until two poles have formed, generating a barrel shaped spindle. In human oocytes spindle microtubule nucleation begins on the chromosomes, forming an aster that eventually expands to surround the chromosomes. Chromosomes then slide along the microtubules towards the equator of the spindle, at which point the chromosome kinetochores form end-on attachments to microtubules.
Metaphase I
Homologous pairs move together along the metaphase plate: Askinetochore A kinetochore (, ) is a flared oblique-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers, which can be thought of as the ropes pulling chromosomes apart, attach during cell division to ...microtubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 an ...from both spindle poles attach to their respective kinetochores, the paired homologous chromosomes align along an equatorial plane that bisects the spindle, due to continuous counterbalancing forces exerted on the bivalents by the microtubules emanating from the two kinetochores ofhomologous chromosomes Homologous chromosomes or homologs are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during meiosis. Homologs have the same genes in the same locus (genetics), loci, where they provide points along e .... This attachment is referred to as a bipolar attachment. The physical basis of theindependent assortment Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized ...of chromosomes is the random orientation of each bivalent along with the metaphase plate, with respect to the orientation of the other bivalents along the same equatorial line. The protein complexcohesin Cohesin is a protein complex that mediates Establishment of sister chromatid cohesion, sister chromatid cohesion, homologous recombination, and Topologically associating domain, DNA looping. Cohesin is formed of SMC3, SMC1A, SMC1, RAD21, SCC1 an ...holdssister chromatids A sister chromatid refers to the identical copies ( chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the du ...together from the time of their replication until anaphase I. Inmitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ..., the force of kinetochore microtubules pulling in opposite directions creates tension. The cell senses this tension and does not progress with anaphase until all the chromosomes are properly bi-oriented. In meiosis, establishing tension ordinarily requires at least one crossover per chromosome pair in addition to cohesin between sister chromatids. ''(seeChromosome segregation Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segreg ...)''
Anaphase I
Kinetochore A kinetochore (, ) is a flared oblique-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers, which can be thought of as the ropes pulling chromosomes apart, attach during cell division to ...microtubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 an ...shorten, pullinghomologous chromosomes Homologous chromosomes or homologs are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during meiosis. Homologs have the same genes in the same locus (genetics), loci, where they provide points along e ...(which each consist of a pair ofsister chromatids A sister chromatid refers to the identical copies ( chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the du ...) to opposite poles. Non-kinetochore microtubules lengthen, pushing thecentrosomes In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progre ...farther apart. The cell elongates in preparation for division down the center. Unlike inmitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ..., only thecohesin Cohesin is a protein complex that mediates Establishment of sister chromatid cohesion, sister chromatid cohesion, homologous recombination, and Topologically associating domain, DNA looping. Cohesin is formed of SMC3, SMC1A, SMC1, RAD21, SCC1 an ...from the chromosome arms is degraded while the cohesin surrounding the centromere remains protected by a protein named Shugoshin (Japanese for "guardian spirit"), what prevents the sister chromatids from separating.Pierce, Benjamin (2009). «Chromosomes and Cell Reproduction». Genetics: A Conceptual Approach, Third Edition. W.H. FREEMAN AND CO. P. 32 This allows the sister chromatids to remain together while homologs are segregated.
Telophase I
The first meiotic division effectively ends when thechromosomes A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most importa ...arrive at the poles. Each daughter cell now has half the number of chromosomes but each chromosome consists of a pair ofchromatids A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chrom .... Themicrotubules Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 an ...that make up the spindle network disappear, and a newnuclear membrane The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer polar membrane, membranes that in eukaryotic cells surround the Cell nucleus, nucleus, which encloses the genome, genetic material. The nuclear envelope con ...surrounds each haploid set.Cytokinesis Cytokinesis () is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division ..., the pinching of the cell membrane in animal cells or the formation of the cell wall in plant cells, occurs, completing the creation of two daughter cells. However, cytokinesis does not fully complete resulting in "cytoplasmic bridges" which enable the cytoplasm to be shared between daughter cells until the end of meiosis II. Sister chromatids remain attached during telophase I. Cells may enter a period of rest known asinterkinesis Interkinesis or interphase II is a period of rest that cell (biology), cells of some species enter during meiosis between meiosis I and meiosis II. No DNA replication occurs during interkinesis; however, replication does occur during the interphas ...or interphase II. NoDNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...occurs during this stage.
Meiosis II
Meiosis II is the second meiotic division, and usually involves equational segregation, or separation ofsister chromatids A sister chromatid refers to the identical copies ( chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the du .... Mechanically, the process is similar tomitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ..., though its genetic results are fundamentally different. The result is the production of four haploid cells (n chromosomes; 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) produced in meiosis I. The four main steps of meiosis II are: prophase II, metaphase II, anaphase II, and telophase II. In prophase II, the disappearance of thenucleoli The nucleolus (; : nucleoli ) is the largest structure in the nucleus of eukaryotic cells. It is best known as the site of ribosome biogenesis. The nucleolus also participates in the formation of signal recognition particles and plays a ro ...and thenuclear envelope The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membran ...is seen again as well as the shortening and thickening of the chromatids.Centrosomes In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progre ...move to the polar regions and arrange spindle fibers for the second meiotic division. In metaphase II, thecentromeres The centromere links a pair of sister chromatids together during cell division. This constricted region of chromosome connects the sister chromatids, creating a short arm (p) and a long arm (q) on the chromatids. During mitosis, spindle fibers ...contain twokinetochore A kinetochore (, ) is a flared oblique-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers, which can be thought of as the ropes pulling chromosomes apart, attach during cell division to ...s that attach to spindle fibers from the centrosomes at opposite poles. The new equatorial metaphase plate is rotated by 90 degrees when compared to meiosis I, perpendicular to the previous plate. This is followed by anaphase II, in which the remaining centromericcohesin Cohesin is a protein complex that mediates Establishment of sister chromatid cohesion, sister chromatid cohesion, homologous recombination, and Topologically associating domain, DNA looping. Cohesin is formed of SMC3, SMC1A, SMC1, RAD21, SCC1 an ..., not protected by Shugoshin anymore, is cleaved, allowing the sister chromatids to segregate. The sister chromatids by convention are now called sister chromosomes as they move toward opposing poles. The process ends with telophase II, which is similar to telophase I, and is marked by decondensation and lengthening of the chromosomes and the disassembly of the spindle. Nuclear envelopes re-form and cleavage or cell plate formation eventually produces a total of four daughter cells, each with a haploid set of chromosomes. Meiosis is now complete and ends up with four new daughter cells.
Origin and function
Origin of meiosis
Meiosis appears to be a fundamental characteristic of eukaryotic organisms and to have been present early in eukaryotic evolution. Eukaryotes that were once thought to lack meiotic sex have recently been shown to likely have, or once have had, this capability. As one example, ''Giardia intestinalis'', a common intestinal parasite, was previously considered to have descended from a lineage that predated the emergence of meiosis and sex. However, ''G. intestinalis'' has now been found to possess a core set of meiotic genes, including five meiosis specific genes. Also evidence for meiotic recombination, indicative ofsexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote tha ..., was found in ''G. intestinalis''. Another example of organisms previously thought to be asexual are parasitic protozoa of the genus ''Leishmania ''Leishmania'' () is a genus of parasitic protozoans, single-celled eukaryotic organisms of the trypanosomatid group that are responsible for the disease leishmaniasis. The parasites are transmitted by sandflies of the genus '' Phlebotomus'' ...'', which cause human disease. However, these organisms were shown to have a sexual cycle consistent with a meiotic process. Althoughamoeba An amoeba (; less commonly spelled ameba or amœba; : amoebas (less commonly, amebas) or amoebae (amebae) ), often called an amoeboid, is a type of Cell (biology), cell or unicellular organism with the ability to alter its shape, primarily by ...were once generally regarded as asexual, evidence has been presented that most lineages are anciently sexual and that the majority of asexual groups probably arose recently and independently. Dacks and Rogers proposed, based on a phylogenetic analysis, that facultative sex was likely present in the common ancestor of eukaryotes.
Genetic variation
The new combinations of DNA created during meiosis are a significant source ofgenetic variation Genetic variation is the difference in DNA among individuals or the differences between populations among the same species. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources ...alongside mutation, resulting in new combinations ofalleles An allele is a variant of the sequence of nucleotides at a particular location, or locus, on a DNA molecule. Alleles can differ at a single position through single nucleotide polymorphisms (SNP), but they can also have insertions and deletions ..., which may be beneficial. Meiosis generates gamete genetic diversity in two ways: (1)Law of Independent Assortment Mendelian inheritance (also known as Mendelism) is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by .... The independent orientation of homologous chromosome pairs along the metaphase plate during metaphase I and orientation of sister chromatids in metaphase II, this is the subsequent separation of homologs and sister chromatids during anaphase I and II, it allows a random and independent distribution of chromosomes to each daughter cell (and ultimately to gametes); and (2) Crossing Over. The physical exchange of homologous chromosomal regions by homologous recombination during prophase I results in new combinations of genetic information within chromosomes. However, such physical exchange does not always occur during meiosis. In the oocytes of the silkworm ''Bombyx mori ''Bombyx mori'', commonly known as the domestic silk moth, is a moth species belonging to the family Bombycidae. It is the closest relative of '' Bombyx mandarina'', the wild silk moth. Silkworms are the larvae of silk moths. The silkworm is of ...'', meiosis is completely achiasmate (lacking crossovers). Althoughsynaptonemal complex The synaptonemal complex (SC) is a protein structure that forms between homologous chromosomes (two pairs of sister chromatids) during meiosis and is thought to mediate synapsis and recombination during prophase I during meiosis in eukaryotes ...es are present during thepachytene The ''pachytene'' stage ( /ˈpækɪtiːn/ ''PAK-i-teen''; from Greek words meaning "thick threads".), also known as ''pachynema'', is the third stage of prophase I during meiosis, the specialized cell division that reduces chromosome number by ha ...stage of meiosis in ''B. mori'', crossing-overhomologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...is absent between the pairedchromosome A chromosome is a package of DNA containing part or all of the genetic material of an organism. In most chromosomes, the very long thin DNA fibers are coated with nucleosome-forming packaging proteins; in eukaryotic cells, the most import ...s.
Prophase I arrest
Female mammals and birds are born possessing all the oocytes needed for future ovulations, and theseoocyte An oocyte (, oöcyte, or ovocyte) is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ger ...s are arrested at the prophase I stage of meiosis. In humans, as an example, oocytes are formed between three and four months ofgestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pregn ...within the fetus and are therefore present at birth. During this prophase I arrested stage (dictyate The dictyate or dictyotene is a prolonged resting phase in oogenesis. It occurs in the stage of meiotic prophase I in ootidogenesis. It starts late in fetal life and is terminated shortly before ovulation by the LH surge. Thus, although the majorit ...), which may last for decades, four copies of thegenome A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as ...are present in the oocytes. The arrest of ooctyes at the four genome copy stage was proposed to provide the informational redundancy needed to repair damage in the DNA of thegermline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif .... The repair process used appears to involvehomologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...al repair Prophase I arrested oocytes have a high capability for efficient repair ofDNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ..., particularly exogenously induced double-strand breaks. DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant offertility Fertility in colloquial terms refers the ability to have offspring. In demographic contexts, fertility refers to the actual production of offspring, rather than the physical capability to reproduce, which is termed fecundity. The fertility rate ....
Meiosis as an adaptation for repairing germline DNA
Genetic recombination Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...can be viewed as fundamentally aDNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...process, and that when it occurs during meiosis it is an adaptation for repairing thegenomic Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, ...DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...that is passed on to progeny. Experimental findings indicate that a substantial benefit of meiosis is recombinational repair ofDNA damage DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...in thegermline In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes ( eggs and sperm), which can come together to form a zygote. They dif ..., as indicated by the following examples.Hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...is an agent that causesoxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...leading to oxidative DNA damage. Treatment of the yeast ''Schizosaccharomyces pombe ''Schizosaccharomyces pombe'', also called "fission yeast", is a species of yeast used in traditional brewing and as a model organism in molecular and cell biology. It is a unicellular eukaryote, whose cells are rod-shaped. Cells typically meas ...'' withhydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...increased the frequency of mating and the formation of meiotic spores by 4 to 18-fold. '' Volvox carteri'', a haploid multicellular, facultatively sexual green algae, can be induced by heat shock to reproduce by meiotic sex. This induction can be inhibited byantioxidant Antioxidants are Chemical compound, compounds that inhibit Redox, oxidation, a chemical reaction that can produce Radical (chemistry), free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants ...s indicating that the induction of meiotic sex by heat shock is likely mediated byoxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...leading to increased DNA damage.
Occurrence
In life cycles
Meiosis occurs in eukaryotic life cycles involvingsexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote tha ..., consisting of the cyclical process of growth and development bymitotic Mitosis () is a part of the cell cycle in eukaryotic cells in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis is an equational division which gives rise to genetically identical cells in which the t ...cell division, production of gametes by meiosis and fertilization. At certain stages of the life cycle,germ cell A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they unde ...s produce gametes.Somatic cell In cellular biology, a somatic cell (), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism ...s make up the body of the organism and are not involved in gamete production. Cycling meiosis and fertilization events results in alternation between haploid and diploid states. The organism phase of the life cycle can occur either during the diploid state (''diplontic'' life cycle), during the haploid state (''haplontic'' life cycle), or both (''haplodiplontic'' life cycle), in which there are two distinct organism phases, one with haploid cells and the other with diploid cells. In the ''diplontic life cycle'' (with pre-gametic meiosis), as in humans, the organism is multicellular and diploid, grown by mitosis from a diploid cell called thezygote A zygote (; , ) is a eukaryote, eukaryotic cell (biology), cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individ .... The organism's diploid germ-line stem cells undergo meiosis to make haploid gametes (thespermatozoa A spermatozoon (; also spelled spermatozoön; : spermatozoa; ) is a motile sperm cell (biology), cell produced by male animals relying on internal fertilization. A spermatozoon is a moving form of the ploidy, haploid cell (biology), cell that is ...in males and ova in females), which fertilize to form the zygote. The diploid zygote undergoes repeated cellular division bymitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...to grow into the organism. In the ''haplontic life cycle'' (with post-zygotic meiosis), the organism is haploid, by the proliferation and differentiation of a single haploid cell called thegamete A gamete ( ) is a Ploidy#Haploid and monoploid, haploid cell that fuses with another haploid cell during fertilization in organisms that Sexual reproduction, reproduce sexually. Gametes are an organism's reproductive cells, also referred to as s .... Two organisms of opposing sex contribute their haploid gametes to form a diploid zygote. The zygote undergoes meiosis immediately, creating four haploid cells. These cells undergo mitosis to create the organism. Manyfungi A fungus (: fungi , , , or ; or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and mold (fungus), molds, as well as the more familiar mushrooms. These organisms are classified as one ...and manyprotozoa Protozoa (: protozoan or protozoon; alternative plural: protozoans) are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically ...utilize the haplontic life cycle. In the ''haplodiplontic life cycle'' (with sporic or intermediate meiosis), the living organism alternates between haploid and diploid states. Consequently, this cycle is also known as thealternation of generations Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploi .... The diploid organism's germ-line cells undergo meiosis to produce spores. The spores proliferate by mitosis, growing into a haploid organism. The haploid organism's gamete then combines with another haploid organism's gamete, creating the zygote. The zygote undergoes repeated mitosis and differentiation to produce a new diploid organism. The haplodiplontic life cycle can be considered a fusion of the diplontic and haplontic life cycles.
In plants and animals
Meiosis occurs in all animals and plants. The result, the production of gametes with half the number of chromosomes as the parent cell, is the same, but the detailed process is different. In animals, meiosis produces gametes directly. In land plants and some algae, there is an
alternation of generations Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploi ...such that meiosis in the diploidsporophyte A sporophyte () is one of the two alternation of generations, alternating multicellular organism, multicellular phases in the biological life cycle, life cycles of plants and algae. It is a diploid multicellular organism which produces asexual Spo ...generation produces haploid spores instead of gametes. When they germinate, these spores undergo repeated cell division by mitosis, developing into a multicellular haploidgametophyte A gametophyte () is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the se ...generation, which then produces gametes directly (i.e. without further meiosis). In both animals and plants, the final stage is for the gametes to fuse to form azygote A zygote (; , ) is a eukaryote, eukaryotic cell (biology), cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individ ...in which the original number of chromosomes is restored.
In mammals
In females, meiosis occurs in cells known asoocyte An oocyte (, oöcyte, or ovocyte) is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ger ...s (singular: oocyte). Each primary oocyte divides twice in meiosis, unequally in each case. The first division produces a daughter cell, and a much smaller polar body which may or may not undergo a second division. In meiosis II, division of the daughter cell produces a second polar body, and a single haploid cell, which enlarges to become anovum The egg cell or ovum (: ova) is the female reproductive cell, or gamete, in most anisogamous organisms (organisms that reproduce sexually with a larger, female gamete and a smaller, male one). The term is used when the female gamete is not capa .... Therefore, in females each primary oocyte that undergoes meiosis results in one mature ovum and two or three polar bodies. There are pauses during meiosis in females. Maturing oocytes are arrested in prophase I of meiosis I and lie dormant within a protective shell of somatic cells called the follicle. At this stage, the oocyte nucleus is called the germinal vesicle. At the beginning of eachmenstrual cycle The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that makes pregnancy possible. The ovarian cycle controls the production and release of eg ..., FSH secretion from the anterior pituitary stimulates a few follicles to mature in a process known asfolliculogenesis :''Although the process is similar in many animals, this article will deal exclusively with human folliculogenesis.'' In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains an .... During this process, the maturing oocytes resume meiosis and continue until metaphase II of meiosis II, where they are again arrested just before ovulation. The breakdown of the germinal vesicle, condensation of chromosomes, and assembly of the bipolar metaphase I spindle are all clear indications that meiosis has resumed. If these oocytes are fertilized by sperm, they will resume and complete meiosis. During folliculogenesis in humans, usually one follicle becomes dominant while the others undergoatresia Atresia is a condition in which an orifice or passage in the body is (usually abnormally) closed or absent. Types Anotia Anotia is characterized by the complete absence of the ear and is extremely rare. This condition may affect one or both .... The process of meiosis in females occurs duringoogenesis Oogenesis () or ovogenesis is the differentiation of the ovum (egg cell) into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated before birth during embryonic devel ..., and differs from the typical meiosis in that it features a long period of meiotic arrest known as thedictyate The dictyate or dictyotene is a prolonged resting phase in oogenesis. It occurs in the stage of meiotic prophase I in ootidogenesis. It starts late in fetal life and is terminated shortly before ovulation by the LH surge. Thus, although the majorit ...stage and lacks the assistance ofcentrosome In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progre ...s. In males, meiosis occurs duringspermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testicle. This process starts with the Mitosis, mitotic division of the stem cells located close to the basement membrane of ...in theseminiferous tubule Seminiferous tubules are located within the testicles, and are the specific location of meiosis, and the subsequent creation of male gametes, namely spermatozoa. Structure The epithelium of the tubule consists of a type of sustentacular cells k ...s of thetesticle A testicle or testis ( testes) is the gonad in all male bilaterians, including humans, and is Homology (biology), homologous to the ovary in females. Its primary functions are the production of sperm and the secretion of Androgen, androgens, p ...s. Meiosis during spermatogenesis is specific to a type of cell calledspermatocyte Spermatocytes are a type of male gametocyte in animals. They derive from immature germ cells called spermatogonia. They are found in the testis, in a structure known as the seminiferous tubules. There are two types of spermatocytes, primary and s ...s, which will later mature to becomespermatozoa A spermatozoon (; also spelled spermatozoön; : spermatozoa; ) is a motile sperm cell (biology), cell produced by male animals relying on internal fertilization. A spermatozoon is a moving form of the ploidy, haploid cell (biology), cell that is .... Meiosis of primordial germ cells happens at the time of puberty, much later than in females. Tissues of the male testis suppress meiosis by degrading retinoic acid, proposed to be a stimulator of meiosis. This is overcome at puberty when cells within seminiferous tubules called Sertoli cells start making their own retinoic acid. Sensitivity to retinoic acid is also adjusted by proteins called nanos and DAZL. Genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is required postnatally to stimulate spermatogonia differentiation which results several days later in spermatocytes undergoing meiosis, however retinoic acid is not required during the time when meiosis initiates. In female mammals, meiosis begins immediately after primordial germ cells migrate to the ovary in the embryo. Some studies suggest that retinoic acid derived from the primitive kidney (mesonephros) stimulates meiosis in embryonic ovarian oogonia and that tissues of the embryonic male testis suppress meiosis by degrading retinoic acid. However, genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is not required for initiation of either female meiosis which occurs during embryogenesis or male meiosis which initiates postnatally.
Flagellates
While the majority of eukaryotes have a two-divisional meiosis (though sometimes achiasmatic), a very rare form, one-divisional meiosis, occurs in some flagellates (parabasalid The parabasalids are a group of flagellated protists within the supergroup Excavata. Most of these eukaryotic organisms form a symbiosis, symbiotic relationship in animals. These include a variety of forms found in the intestines of termites and ...s andoxymonad The Oxymonads (or Oxymonadida) are a group of flagellated protists found exclusively in the intestines of animals, mostly termites and other Xylophagy, wood-eating insects. Along with the similar parabasalid flagellates, they harbor the Symbiosi ...s) from the gut of the wood-feeding cockroach ''Cryptocercus ''Cryptocercus'' is a genus of Dictyoptera (cockroaches and allies) and the sole member of its own family Cryptocercidae. Species are known as wood roaches or brown-hooded cockroaches. These roaches are subsocial, their young requiring considerab ...''.
Role in human genetics and disease
Recombination among the 23 pairs of human chromosomes is responsible for redistributing not just the actual chromosomes, but also pieces of each of them. There is also an estimated 1.6-fold more recombination in females relative to males. In addition, average, female recombination is higher at the centromeres and male recombination is higher at the telomeres. On average, 1 million bp (1 Mb) correspond to 1 cMorgan (cm = 1% recombination frequency). The frequency of cross-overs remain uncertain. In yeast, mouse and human, it has been estimated that ≥200 double-strand breaks (DSBs) are formed per meiotic cell. However, only a subset of DSBs (~5–30% depending on the organism), go on to produce crossovers, which would result in only 1-2 cross-overs per human chromosome. In humans, recombination rates differ between maternal and paternal DNA: * Maternal DNA: Recombines approximately 42 times on average. * Paternal DNA: Recombines approximately 27 times on average.
Nondisjunction
The normal separation of chromosomes in meiosis I or sister chromatids in meiosis II is termed ''disjunction''. When the segregation is not normal, it is called ''nondisjunction''. This results in the production of gametes which have either too many or too few of a particular chromosome, and is a common mechanism for
trisomy A trisomy is a type of polysomy in which there are three instances of a particular chromosome, instead of the normal two. A trisomy is a type of aneuploidy (an abnormal number of chromosomes). Description and causes Most organisms that reprod ...ormonosomy Monosomy is a form of aneuploidy with the presence of only one chromosome from a pair. Partial monosomy occurs when a portion of one chromosome in a pair is missing. Human monosomy Human conditions due to monosomy: * Turner syndrome – Females .... Nondisjunction can occur in the meiosis I or meiosis II, phases of cellular reproduction, or duringmitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic .... Most monosomic and trisomic human embryos are not viable, but some aneuploidies can be tolerated, such as trisomy for the smallest chromosome, chromosome 21. Phenotypes of these aneuploidies range from severe developmental disorders to asymptomatic. Medical conditions include but are not limited to: * Down syndrome – trisomy of chromosome 21 *Patau syndrome Patau syndrome is a syndrome caused by a chromosomal abnormality, in which some or all of the cells of the body contain extra genetic material from chromosome 13. The extra genetic material disrupts normal development, causing multiple and co ...– trisomy of chromosome 13 *Edwards syndrome Edwards may refer to: People * Edwards (surname), an English surname * Edwards family, a prominent family from Chile * Edwards Barham (1937–2014), American politician * Edwards Davis (1873–1936), American actor, producer, and playwright * Edwa ...– trisomy of chromosome 18 *Klinefelter syndrome Klinefelter syndrome (KS), also known as 47,XXY, is a chromosome anomaly where a male has an extra X chromosome. These complications commonly include infertility and small, poorly functioning testicles (if present). These symptoms are often n ...– extra X chromosomes in males – i.e. XXY, XXXY, XXXXY, etc. *Turner syndrome Turner syndrome (TS), commonly known as 45,X, or 45,X0,Also written as 45,XO. is a chromosomal disorder in which cells of females have only one X chromosome instead of two, or are partially missing an X chromosome (sex chromosome monosomy) lea ...– lacking of one X chromosome in females – i.e. X0 *Triple X syndrome Trisomy X, also known as triple X syndrome and characterized by the karyotype 47,XXX, is a chromosome disorder in which a female has an extra copy of the X chromosome. It is relatively common and occurs in 1 in 1,000 females, but is rarely diagn ...– an extra X chromosome in females *Jacobs syndrome XYY syndrome, also known as Jacobs syndrome, is an aneuploid genetic condition in which a male has an extra Y chromosome. There are usually few symptoms. These may include being taller than average and an increased risk of learning disabiliti ...– an extra Y chromosome in males. The probability of nondisjunction in human oocytes increases with increasing maternal age, presumably due to loss ofcohesin Cohesin is a protein complex that mediates Establishment of sister chromatid cohesion, sister chromatid cohesion, homologous recombination, and Topologically associating domain, DNA looping. Cohesin is formed of SMC3, SMC1A, SMC1, RAD21, SCC1 an ...over time.
Comparison to mitosis
In order to understand meiosis, a comparison to mitosis is helpful. The table below shows the differences between meiosis and mitosis.
Molecular regulation
Maturation promoting factor (MPF) seems to have a role in meiosis based on experiments with ''Xenopus laevis'' oocytes. Mammalian oocyte MPF induced germinal vesicle breakdown (GVB) in starfish and ''Xenopus laevis'' oocytes. MPF is active prior to GVB but falls off toward the end of meiosis I. CDK1 and cyclin B levels are correlated with oocyte GVB competence and are likely under translational rather than transcriptional control. In meiosis II, MPF reappears ahead of metaphase II, and its activity remains high up to fertilization. In mammals, meiotic arrest begins with natriuretic peptide type C (NPPC) from mural granulosa cells, which activates production of cyclic guanosine 3′,5′-monophosphate (cGMP) in concert with natriuretic peptide receptor 2 (NPR2) on cumulus cells. cGMP diffuses into oocytes and halts meiosis by inhibiting phosphodiesterase 3A (PDE3A) and cyclic adenosine 3′,5′-monophosphate (cAMP) hydrolysis. In the oocyte, G-protein-coupled receptor GPR3/12 activates adenylyl cyclase to generate cAMP. cAMP stimulates protein kinase A (PKA) to activate the nuclear kinase WEE2 by phosphorylation. PKA also assists in phosphorylation of the CDK1 phosphatase CDC25B to keep it in the cytoplasm; in its unphosphorylated form, CDC25B migrates to the nucleus. Protein kinase C (PKC) may also have a role in inhibiting meiotic progression to metaphase II. Overall, CDK1 activity is suppressed to prevent resumption of meiosis. Oocytes further promote expression of NPR2 and inosine monophosphate dehydrogenase (and thereby the production of cGMP) in cumulus cells. Follicle-stimulating hormone and estradiol likewise promote expression of NPPC and NPR2. Hypoxanthine, a purine apparently originating in the follicle, also inhibits in vitro oocyte meiosis. A spike in luteinizing hormone (LH) spurs oocyte maturation, in which oocytes are released from meiotic arrest and progress from prophase I through metaphase II. LH-induced epidermal growth factor-like factors like amphiregulin and epiregulin synthesized in mural granulosa cells reduce levels of cGMP in oocytes by restricting cGMP transport through cumulus cell-oocyte gap junctions and lowering NPPC levels and NPR2 activity. In fact, LH-induced epidermal growth factor-like factors may cause the destabilization and breakdown of gap junctions altogether. LH-induced epidermal growth factor-like factors may trigger production of additional oocyte maturation factors like steroids and follicular fluid-derived meiosis-activating sterol (FF-MAS) in cumulus cells. FF-MAS promotes progression from metaphase I to metaphase II, and it may help stabilize metaphase II arrest. Meiosis resumption is reinforced by the exit of WEE2 from the nucleus due to CDK1 activation. Phosphodiesterases (PDEs) metabolize cAMP and may be temporarily activated by PKA-mediated phosphorylation. Longer-term regulation of phosphodiesterases may require modulation of protein expression. For example, hypoxanthine is a PDE inhibitor that may stymie cAMP metabolism. Kinases like protein kinase B, Aurora kinase A, and polo-like kinase 1 contribute to the resumption of meiosis. There are similarities between the mechanisms of meiotic prophase I arrest and resumption and the mitotic G2 DNA damage checkpoint: CDC14B-based activation of APC-CDH1 in arrest and CDC25B-based resumption. Meiotic arrest requires inhibitory phosphorylation of CDK1 at amino acid residues Thr-14 and Tyr-15 by MYT1 and WEE1 as well as regulation of cyclin B levels facilitated by the anaphase-promoting complex (APC). CDK1 is regulated by cyclin B, whose synthesis peaks at the end of meiosis I. At anaphase I, cyclin B is degraded by an ubiquitin-dependent pathway. Cyclin B synthesis and CDK1 activation prompt oocytes to enter metaphase, while entry into anaphase follows ubiquitin-mediated cyclin B degradation, which brings down CDK1 activity. Proteolysis of adhesion proteins between homologous chromosomes is involved in anaphase I, while proteolysis of adhesion proteins between sister chromatids is involved in anaphase II. Meiosis II arrest is effected by cytostatic factor (CSF), whose elements include the MOS protein, mitogen-activated protein kinase kinase (MAPKK/MEK1), and MAPK. The protein kinase p90 (RSK) is one critical target of MAPK and may help block entry into S-phase between meiosis I and II by reactivating CDK1. There's evidence that RSK aids entry into meiosis I by inhibiting MYT1, which activates CDK1. CSF arrest might take place through regulation of the APC as part of the spindle assembly checkpoint. In the budding yeast ''S. cerevisiae'', Clb1 is the main meiotic regulatory cyclin, though Clb3 and Clb4 are also expressed during meiosis and activate a p34cdc28-associated kinase immediately prior to the first meiotic division. The IME1 transcription factor drives entry into meiotic S-phase and is regulated according to inputs like nutrition. a1/α2 represses a repressor of ''IME1'', initiating meiosis. Numerous ''S. cerevisiae'' meiotic regulatory genes have been identified. A few are presented here. ''IME1'' enables sporulation of non-a/α diploids. ''IME2''/''SME1'' enables sporulation when nitrogen is present, supports recombination in a/α cells expressing ''RME1'', an inhibitor of meiosis, and encodes a protein kinase homolog. ''MCK1'' (meiosis and centromere regulatory kinase) also supports recombination in a/α cells expressing ''RME1'' and encodes a protein kinase homolog. ''SME2'' enables sporulation when ammonia or glucose are present. ''UME1-5'' enable expression of certain early meiotic genes in vegetative, non-a/α cells. In the fission yeast ''S. pombe'', the Cdc2 kinase and Cig2 cyclin together initiate the premeiotic S phase, while cyclin Cdc13 and the CDK activator Cdc25 are necessary for both meiotic divisions. However, the Pat1-Mei2 system is at the heart of ''S. pombe'' meiotic regulation. Mei2 is the major meiotic regulator. It moves between the nucleus and cytoplasm and works with meiRNA to promote meiosis I. Moreover, Mei2 is implicated in exit from mitosis and induction of premeiotic S phase. Mei2 may inactivate the DSR-Mmi1 system through sequestration of Mmi1 to stabilize meiosis-specific transcript expression. Mei2 may stall growth and bring about G1 arrest. Pat1 is a Ser/Thr protein kinase that phosphorylates Mei2, an RNA-binding protein, on residues Ser438 and Thr527. This phosphorylation may decrease the half-life of Mei2 by making it more likely to be destroyed by a proteasome working with E2 Ubc2 and E3 Ubr1. The Mei4 transcription factor is necessary to transcriptionally activate ''cdc25'' in meiosis, and the ''mei4'' mutant experiences cell cycle arrest. Mes1 inhibits the APC/C activator Slp1 such that the Cdc2-Cdc13 MPF activity can drive the second meiotic division. It has been suggested that Yeast CEP1 gene product, that binds centromeric region CDE1, may play a role in chromosome pairing during meiosis-I. Meiotic recombination is mediated through double stranded break, which is catalyzed by Spo11 protein. Also Mre11, Sae2 and Exo1 play role in breakage and recombination. After the breakage happen, recombination take place which is typically homologous. The recombination may go through either a double Holliday junction (dHJ) pathway or synthesis-dependent strand annealing (SDSA). (The second one gives to noncrossover product). Seemingly there are checkpoints for meiotic cell division too. In S. pombe, Rad proteins, S. pombe Mek1 (with FHA kinase domain), Cdc25, Cdc2 and unknown factor is thought to form a checkpoint. In vertebrate oogenesis, maintained by cytostatic factor (CSF) has role in switching into meiosis-II.
See also
*Fertilisation Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or of ...*Coefficient of coincidence In genetics, the coefficient of coincidence (c.o.c.) is a measure of interference in the formation of chromosomal crossovers during meiosis. It is generally the case that, if there is a crossover at one spot on a chromosome, this decreases the lik ...*DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...*Oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...*Synizesis (biology) Synizesis refers to a phenomenon sometimes observed in one of the subphases of meiosis. This phenomenon, sometimes referred to as a "synizetic knot", and contrasted with the chromosome "bouquet" more typically observed, is characterized by the local ...*Biological life cycle In biology, a biological life cycle (or just life cycle when the biological context is clear) is a series of stages of the life of an organism, that begins as a zygote, often in an egg, and concludes as an adult that reproduces, producing an offsp ...*Apomixis In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils. Apomictically produced offspring are geneti ...*Parthenogenesis Parthenogenesis (; from the Greek + ) is a natural form of asexual reproduction in which the embryo develops directly from an egg without need for fertilization. In animals, parthenogenesis means the development of an embryo from an unfertiliz ...*Alternation of generations Alternation of generations (also known as metagenesis or heterogenesis) is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploi ...*Brachymeiosis Brachymeiosis was a hypothesized irregularity in the sexual reproduction of ascomycete fungi, a variant of meiosis following an "extra" karyogamy (nuclear fusion) step. The hypothesized process would have transformed four diploid nuclei into eight ...*Mitotic recombination Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand ...*Dikaryon The dikaryon (karyogamy) is a cell nucleus feature that is unique to certain fungi. (The green alga '' Derbesia'' had been long considered an exception, until the heterokaryotic hypothesis was challenged by later studies.) Compatible cell-types c ...*Mating of yeast The mating of yeast, also known as yeast sexual reproduction, is a biological process that promotes genetic diversity and adaptation in yeast species. Yeast species, such as ''Saccharomyces cerevisiae'' (baker's yeast), are single-celled eukaryot ...
References
Footnotes
Citations
Cited texts
*
External links
Meiosis Flash Animation
Khan Academy, video lecture
CCO
The Cell-Cycle Ontology
Stages of Meiosis animation
*
"Abby Dernburg Seminar: Chromosome Dynamics During Meiosis"
{{Authority control Cellular processes Cell cycle Molecular genetics Plant sexuality Articles containing video clips 1876 in science