Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.
Materials can be categorized into three different regimes, namely bulk,
nanoparticle
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s and nanoclusters. Bulk metals are
electrical conductor
In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
s and good optical reflectors and metal
nanoparticles
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
display intense colors due to surface
plasmon
In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quant ...
resonance
Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
.
However, when the size of metal nanoclusters is further reduced to form a nanocluster, the
band structure becomes discontinuous and breaks down into discrete
energy level
A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s, somewhat similar to the energy levels of
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s.
This gives nanoclusters similar qualities as a singular molecule and does not exhibit
plasmon
In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quant ...
ic behavior; nanoclusters are known as the bridging link between atoms and
nanoparticles
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
.
Nanoclusters may also be referred to as molecular nanoparticles.
History of nanoclusters
The formation of stable nanoclusters such as Buckminsterfullerene
Buckminsterfullerene is a type of fullerene with the formula . It has a cage-like fused-ring structure ( truncated icosahedron) made of twenty hexagons and twelve pentagons, and resembles a football. Each of its 60 carbon atoms is bonded to i ...
(C60) has been suggested to have occurred during the early universe.[
In retrospect, the first nanoclustered ions discovered were the Zintl phases, intermetallics studied in the 1930s.
The first set of experiments to consciously form nanoclusters can be traced back to 1950s and 1960s.][ During this period, nanoclusters were produced from intense molecular beams at low temperature by supersonic expansion. The development of laser vaporization technique made it possible to create nanoclusters of a clear majority of the elements in the periodic table. Since 1980s, there has been tremendous work on nanoclusters of ]semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
elements, compound clusters and transition metal
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
nanoclusters.[
Subnanometric metal clusters typically contain fewer than 10 atoms and measure less than one nanometer in size.
]
Size and number of atoms in metal nanoclusters
According to the Japanese mathematical physicist Ryogo Kubo, the spacing of energy levels can be predicted by
where ''E''F is Fermi energy
The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature.
In a Fermi ga ...
and ''N'' is the number of atoms. For quantum confinement
A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captu ...
𝛿 can be estimated to be equal to the thermal energy
The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including:
* Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
(), where ''k'' is the Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative thermal energy of particles in a ideal gas, gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin (K) and the ...
and ''T'' is temperature.
Stability
Not all the clusters are stable. The stability of nanoclusters depends on the number of atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s in the nanocluster, valence electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
counts and encapsulating scaffolds. In the 1990s, Heer and his coworkers used supersonic expansion of an atomic cluster source into a vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
in the presence of an inert gas
An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
and produced atomic cluster beams.[ Heer's team and Brack et al. discovered that certain masses of formed metal nanoclusters were stable and were like magic clusters.] The number of atoms or size of the core of these magic clusters corresponds to the closing of atomic shells. Certain thiolated clusters such as Au25(SR)18, Au38(SR)24, Au102(SR)44 and Au144(SR)60 also showed magic number stability.[ Häkkinen ''et al'' explained this stability with a theory that a nanocluster is stable if the number of valence electrons corresponds to the shell closure of ]atomic orbital
In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
s as (1S2, 1P6, 1D10, 2S2 1F14, 2P6 1G18, 2D10 3S2 1H22.......).
Synthesis and stabilization
Solid state medium
Molecular beam
A molecular beam is produced by allowing a gas at higher pressure to expand through a small orifice into a chamber at lower pressure to form a beam of particles (atoms, free radicals, molecules or ions) moving at approximately equal velocitie ...
s can be used to create nanocluster beams of virtually any element. They can be synthesized in high vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
by with molecular beam techniques combined with a mass spectrometer for mass selection, separation and analysis. And finally detected with detectors.
Cluster Sources
Seeded supersonic nozzle Seeded supersonic nozzles are mostly used to create clusters of low- boiling-point metal. In this source method metal is vaporized in a hot oven. The metal vapor is mixed with (seeded in) inert carrier gas. The vapor mixture is ejected into a vacuum chamber via a small hole, producing a supersonic molecular beam
A molecular beam is produced by allowing a gas at higher pressure to expand through a small orifice into a chamber at lower pressure to form a beam of particles (atoms, free radicals, molecules or ions) moving at approximately equal velocitie ...
. The expansion into vacuum proceeds adiabatically
Adiabatic (from ''Gr.'' ἀ ''negative'' + διάβασις ''passage; transference'') refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. Notable examples are listed below.
A ...
cooling the vapor. The cooled metal vapor becomes supersaturated
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a ...
, condensing in cluster form.
Gas aggregation Gas aggregation is mostly used to synthesize large clusters of nanoparticles. Metal is vaporized and introduced in a flow of cold inert gas, which causes the vapor to become highly supersaturated. Due to the low temperature of the inert gas, cluster production proceeds primarily by successive single-atom addition.
Laser vaporization Laser vaporization source can be used to create clusters of various size and polarity. Pulse laser is used to vaporize the target metal rod and the rod is moved in a spiral so that a fresh area can be evaporated every time. The evaporated metal vapor is cooled by using cold helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
gas, which causes the cluster formation.
Pulsed arc cluster ion This is similar to laser vaporization, but an intense electric discharge is used to evaporate the target metal.
Ion sputtering Ion sputtering source produces an intense continuous beam of small singly ionized cluster of metals. Cluster ion beams are produced by bombarding the surface with high energetic inert gas (krypton
Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
and xenon
Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
) ions. The cluster production process is still not fully understood.
Liquid-metal ion In liquid-metal ion source a needle is wetted with the metal to be investigated. The metal is heated above the melting point and a potential difference is applied. A very high electric field at the tip of the needle causes a spray of small droplets to be emitted from the tip. Initially very hot and often multiply ionized droplets undergo evaporative cooling and fission to smaller clusters.
Mass Analyzer
Wein filter In Wien filter mass separation is done with crossed homogeneous electric and magnetic fields perpendicular to ionized cluster beam. The net force on a charged cluster with mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
''M'', charge ''Q'', and velocity
Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
''v'' vanishes if ''E'' = ''Bv''/''c'' . The cluster ions are accelerated by a voltage
Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
''V'' to an energy ''QV''. Passing through the filter, clusters with ''M''/''Q'' = 2''V''/(''Ec''/''B'') are not deflected. These cluster ions that are not deflected are selected with appropriately positioned collimator
A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make collimated light or parallel rays), or to cause the spat ...
s.
Quadrupole mass filter The quadrupole mass filter operates on the principle that ion trajectories in a two-dimensional quadrupole field are stable if the field has an AC component superimposed on a DC component with appropriate amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
s and frequencies
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
. It is responsible for filtering sample ions based on their mass-to-charge ratio
The mass-to-charge ratio (''m''/''Q'') is a physical quantity Ratio, relating the ''mass'' (quantity of matter) and the ''electric charge'' of a given particle, expressed in Physical unit, units of kilograms per coulomb (kg/C). It is most widely ...
.
Time of flight mass spectroscopy Time-of-flight spectroscopy consists of an ion gun, a field-free drift space and an ion cluster source. The neutral clusters are ionized, typically using pulsed laser or an electron beam
Since the mid-20th century, electron-beam technology has provided the basis for a variety of novel and specialized applications in semiconductor manufacturing, microelectromechanical systems, nanoelectromechanical systems, and microscopy.
Mechani ...
. The ion gun accelerates the ions that pass through the field-free drift space (flight tube) and ultimately impinge on an ion detector. Usually an oscilloscope
An oscilloscope (formerly known as an oscillograph, informally scope or O-scope) is a type of electronic test instrument that graphically displays varying voltages of one or more signals as a function of time. Their main purpose is capturing i ...
records the arrival time of the ions. The mass is calculated from the measured time of flight
Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a w ...
.
Molecular beam chromatography In this method, cluster ions produced in a laser vaporized cluster source are mass selected and introduced in a long inert-gas-filled drift tube with an entrance and exit aperture. Since cluster mobility depends upon the collision rate with the inert gas
An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent u ...
, they are sensitive to the cluster shape and size.
Aqueous medium
In general, metal nanoclusters in an aqueous medium are synthesized in two steps: reduction of metal ions to zero-valent state and stabilization of nanoclusters. Without stabilization, metal nanoclusters would strongly interact with each other and aggregate irreversibly to form larger particles.
Reduction
There are several methods reported to reduce silver ion into zero-valent silver atoms:
* Chemical Reduction Chemical reductants can reduce silver ions into silver nanoclusters. Some examples of chemical reductants are sodium borohydride
Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula (sometimes written as ). It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodi ...
(NaBH4) and sodium hypophosphite
Sodium hypophosphite (NaPO2H2, also known as sodium phosphinate) is the sodium salt of hypophosphorous acid and is often encountered as the monohydrate, NaPO2H2·H2O. It is a solid at room temperature, appearing as odorless white crystals. It is s ...
(NaPO2H2.H2O). For instance, Dickson and his research team have synthesized silver nanoclusters in DNA using sodium borohydride.[
* Electrochemical Reduction Silver nanoclusters can also be reduced electrochemically using reductants in the presence of stabilizing agents such as and ]tetrabutylammonium
Tetrabutylammonium is a quaternary ammonium cation with the formula , also denoted (where Bu = butyl group). It is used in the research laboratory to prepare lipophilic salts of inorganic anions. Relative to tetraethylammonium derivatives, tetr ...
.[
* Photoreduction Silver nanoclusters can be produced using ultraviolet light, visible or infrared light. The ]photoreduction
Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs ...
process has several advantages such as avoiding the introduction of impurities, fast synthesis, and controlled reduction. For example Diaz and his co-workers have used visible light to reduce silver ions into nanoclusters in the presence of a PMAA polymer. Kunwar et al produced silver nanoclusters using infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light.[
* Other reduction methods Silver nanoclusters are also formed by reducing silver ions with ]gamma rays
A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
, microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
s, or ultrasound
Ultrasound is sound with frequency, frequencies greater than 20 Hertz, kilohertz. This frequency is the approximate upper audible hearing range, limit of human hearing in healthy young adults. The physical principles of acoustic waves apply ...
. For example silver nanoclusters formed by gamma reduction technique in aqueous solutions that contain sodium polyacrylate or partly carboxylated polyacrylamide
Polyacrylamide (abbreviated as PAM or pAAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, ...
or glutaric acids. By irradiating microwaves Linja Li prepared fluorescent silver nanoclusters in PMAA, which typically possess a red color emission. Similarly Suslick et al. have synthesized silver nanoclusters using high ultrasound in the presence of PMAA polymer.[
]
Stabilization
Cryogenic gas molecules are used as scaffolds for nanocluster synthesis in solid state.[ In aqueous medium there are two common methods for stabilizing nanoclusters: ]electrostatic
Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), mean ...
(charge, or inorganic) stabilization and steric (organic) stabilization. Electrostatic stabilization occurs by the adsorption of ion
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s to the often-electrophilic
In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carr ...
metal surface, which creates an electrical double layer
Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
. Thus, this Coulomb repulsion
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the ''electrostatic f ...
force between individual particles will not allow them to flow freely without agglomeration. Whereas on the other hand in steric stabilization,the metal center is surrounded by layers of sterically bulk material. These large adsorbate
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
s provide a steric barrier which prevents close contact of the metal particle centers.[
Thiols ]Thiol
In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
-containing small molecules are the most commonly adopted stabilizers in metal nanoparticle synthesis owing to the strong interaction between thiols and gold and silver. Glutathione
Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
has been shown to be an excellent stabilizer for synthesizing gold nanoclusters with visible luminescence
Luminescence is a spontaneous emission of radiation from an electronically or vibrationally excited species not in thermal equilibrium with its environment. A luminescent object emits ''cold light'' in contrast to incandescence, where an obje ...
by reducing Au3+ in the presence of glutathione with sodium borohydride
Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula (sometimes written as ). It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodi ...
(NaBH4). Also other thiols such as tiopronin, 2-phenylethanethiol, thiolated α-cyclodextrin and 3-mercaptopropionic acid and bidentate dihydrolipoic acid are other thiolated compounds currently being used in the synthesis of metal nanoclusters. The size as well as the luminescence efficiency of the nanocluster depends sensitively on the thiol-to-metal molar ratio. The higher the ratio, the smaller the nanoclusters. The thiol-stabilized nanoclusters can be produced using strong as well as mild reductants. Thioled metal nanoclusters are mostly produced using the strong reductant sodium borohydride (NaBH4). Gold nanocluster synthesis can also be achieved using a mild reducant tetrakis(hydroxymethyl)phosphonium (THPC). Here a zwitterion
In chemistry, a zwitterion ( ; ), also called an inner salt or dipolar ion, is a molecule that contains an equal number of positively and negatively charged functional groups.
:
(1,2- dipolar compounds, such as ylides, are sometimes excluded from ...
ic thiolate ligand
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
, D-penicillamine
Penicillamine, sold under the brand name of Cuprimine among others, is a medication primarily used for the treatment of Wilson's disease. It is also used for people with kidney stones who have high urine cystine levels, rheumatoid arthritis, ...
(DPA), is used as the stabilizer. Furthermore, nanoclusters can be produced by etching larger nanoparticles with thiols. Thiols can be used to etch larger nanoparticles stabilized by other capping agents.
Dendrimers Dendrimer
Dendrimers are highly ordered, Branching (polymer chemistry), branched molecules, polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules. Typically, dendrimers are symmetric about the core, and often adopt a sph ...
s are used as templates to synthesize nanoclusters. Gold nanoclusters embedded in poly(amidoamine) dendrimer (PAMAM) have been successfully synthesized. PAMAM is repeatedly branched molecules with different generations. The fluorescence properties of the nanoclusters are sensitively dependent on the types of dendrimers used as template for the synthesis. Metal nanoclusters embedded in different templates show maximum emission at different wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
s. The change in fluorescence property is mainly due to surface modification by the capping agents. Although gold nanoclusters embedded in PAMAM are blue-emitting the spectrum
A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
can be tuned from the ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
to the near-infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
(NIR) region and the relative PAMAM/gold concentration and the dendrimer generation can be varied. The green-emitting gold nanoclusters can be synthesized by adding mercaptoundecanoic acid (MUA) into the prepared small gold nanoparticle solution. The addition of freshly reduced lipoic acid
Lipoic acid (LA), also known as α-lipoic acid, alpha-lipoic acid (ALA) and thioctic acid, is an organosulfur compound derived from caprylic acid (octanoic acid). ALA, which is made in animals normally, is essential for aerobic metabolism. It i ...
(DHLA) gold nanoclusters (AuNC@DHLA) become red-emitting fluorophores
A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
.[
Polymers ]Polymer
A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s with abundant carboxylic acid
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
groups were identified as promising templates for synthesizing highly fluorescent, water-soluble silver nanoclusters. Fluorescent silver nanoclusters have been successfully synthesized on poly(methacrylic acid), microgels of poly(N-isopropylacrylamide-acrylic acid-2-hydroxyethyl acrylate) polyglycerol-block-poly(acrylic acid
Acrylic acid (IUPAC: prop-2-enoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has ...
) copolymer
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are som ...
s polyelectrolyte
Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are t ...
, poly(methacrylic acid) (PMAA) etc.[ Gold nanoclusters have been synthesized with ]polyethylenimine
Polyethylenimine (PEI) or polyaziridine is a polymer with repeating units composed of the amine group and two carbon Aliphatic_compound, aliphatic ''CHCH'' spacers. Linear polyethyleneimines contain all Amines#Classification_of_amines, secondary ...
(PEI) and poly(N-vinylpyrrolidone) (PVP) templates. The linear polyacrylates, poly(methacrylic acid), act as an excellent scaffold for the preparation of silver nanoclusters in water solution by photoreduction
Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs ...
. Poly(methacrylic acid)-stabilized nanoclusters have an excellent high quantum yield
In particle physics, the quantum yield (denoted ) of a radiation-induced process is the number of times a specific event occurs per photon absorbed by the system.
\Phi(\lambda)=\frac
Applications
Fluorescence spectroscopy
The fluorescence ...
and can be transferred to other scaffolds or solvents and can sense the local environment.[
DNA, proteins and peptides DNA ]oligonucleotide
Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, Recombinant DNA, research, and Forensic DNA, forensics. Commonly made in the laboratory by Oligonucleotide synthesis, solid-phase ...
s are good templates for synthesizing metal nanoclusters. Silver ions possess a high affinity to cytosine
Cytosine () (symbol C or Cyt) is one of the four nucleotide bases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attac ...
bases in single-stranded DNA which makes DNA a promising candidate for synthesizing small silver nanoclusters. The number of cytosines in the loop could tune the stability and fluorescence of Ag NCs. Biological macromolecule
A macromolecule is a "molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass." Polymers are physi ...
s such as peptide
Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
s and protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s have also been utilized as templates for synthesizing highly fluorescent metal nanoclusters. Compared with short peptide
Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
s, large and complicated proteins possess abundant binding sites that can potentially bind and further reduce metal ion
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s, thus offering better scaffolds for template-driven formation of small metal nanoclusters. Also the catalytic function of enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s can be combined with the fluorescence property of metal nanoclusters in a single cluster to make it possible to construct multi-functional nanoprobes.[
Inorganic scaffolds Inorganic materials like glass and ]zeolite
Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
are also used to synthesize the metal nanoclusters. Stabilization is mainly by immobilization of the clusters and thus preventing their tendency to aggregate to form larger nanoparticles. First metal ions doped glasses are prepared and later the metal ion doped glass is activated to form fluorescent nanoclusters by laser irradiation. In zeolites, the pores which are in the Ångström
The angstrom (; ) is a unit of length equal to m; that is, one ten-billionth of a metre, a hundred-millionth of a centimetre, 0.1 nanometre, or 100 picometres. The unit is named after the Swedish physicist Anders Jonas Ångström (1814–18 ...
size range can be loaded with metal ions and later activated either by heat treatment, UV light excitation, or two-photon excitation. During the activation, the silver ions combine to form the nanoclusters that can grow only to oligomeric size due to the limited cage dimensions.[
]
Properties
Magnetic properties
Most atoms in a nanocluster are surface atoms. Thus, it is expected that the magnetic moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
of an atom in a cluster will be larger than that of one in a bulk material. Lower coordination, lower dimensionality, and increasing interatomic distance in metal clusters contribute to enhancement of the magnetic moment in nanoclusters. Metal nanoclusters also show change in magnetic properties. For example, vanadium
Vanadium is a chemical element; it has Symbol (chemistry), symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an ...
and rhodium
Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isot ...
are paramagnetic
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
in bulk but become ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
in nanoclusters. Also, manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
is antiferromagnetic in bulk but ferromagnetic in nanoclusters. A small nanocluster is a nanomagnet, which can be made nonmagnetic simply by changing its structure. So they can form the basis of a nanomagnetic switch.
Reactivity properties
Large surface-to-volume ratios and low coordination of surface atoms are primary reasons for the unique reactivity of nanoclusters. Thus, nanoclusters are widely used as catalysts. Gold nanocluster is an excellent example of a catalyst
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
. While bulk gold is chemically inert, it becomes highly reactive when scaled down to nanometer scale. One of the properties that govern cluster reactivity is electron affinity
The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion.
::X(g) + e− → X−(g) + energy
This differs by si ...
. Chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
has highest electron affinity of any material in the periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. Clusters can have high electron affinity and nanoclusters with high electron affinity are classified as super halogens. Super halogens are metal atoms at the core surrounded by halogen
The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would ...
atoms.[
]
Optical properties
The optical properties of materials are determined by their electronic structure and band gap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO
In chemistry, HOMO and LUMO are types of molecular orbitals. The acronyms stand for ''highest occupied molecular orbital'' and ''lowest unoccupied molecular orbital'', respectively. HOMO and LUMO are sometimes collectively called the ''fronti ...
) varies with the size and composition of a nanocluster. Thus, the optical properties of nanoclusters change. Furthermore, the gaps can be modified by coating the nanoclusters with different ligands or surfactant
Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. The word ''surfactant'' is a Blend word, blend of "surface-active agent",
coined in ...
s. It is also possible to design nanoclusters with tailored band gaps and thus tailor optical properties by simply tuning the size and coating layer of the nanocluster.[
]
Applications
Nanoclusters potentially have many areas of application as they have unique optical, electrical, magnetic and reactivity properties. Nanoclusters are biocompatible, ultrasmall, and exhibit bright emission, hence promising candidates for fluorescence bio imaging or cellular labeling. Nanoclusters along with fluorophores are widely used for staining cells for study both ''in vitro'' and ''in vivo''. Furthermore, nanoclusters can be used for sensing and detection applications. They are able to detect copper
Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
and mercury ions in an aqueous solution based on fluorescence quenching. Also many small molecules, biological entities such as biomolecules
A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipi ...
, proteins, DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
, and RNA
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
can be detected using nanoclusters. The unique reactivity properties and the ability to control the size and number of atoms in nanoclusters have proven to be a valuable method for increasing activity and tuning the selectivity in a catalytic process. Also since nanoparticles are magnetic materials and can be embedded in glass these nanoclusters can be used in optical data storage that can be used for many years without any loss of data.[
]
Further reading (reviews)
* "Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles" by Chakraborty and Pradeep
Further reading (primary references)
*
*
*
*
*
*
*
References
{{reflist
Nanoparticles