
In chemistry, a lone pair refers to a pair of
valence electrons that are not shared with another atom in a
covalent bond
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
'' Gold Book'' definition
''lone (electron) pair''
/ref> and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms. They can be identified by using a Lewis structure. Electron pairs are therefore considered lone pairs if two electrons are paired but are not used in chemical bonding. Thus, the number of electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s in lone pairs plus the number of electrons in bonds equals the number of valence electrons around an atom.
Lone pair is a concept used in valence shell electron pair repulsion theory (VSEPR theory) which explains the shapes of molecules. They are also referred to in the chemistry of Lewis acids and bases. However, not all non-bonding pairs of electrons are considered by chemists to be lone pairs. Examples are the transition metals where the non-bonding pairs do not influence molecular geometry and are said to be stereochemically inactive. In molecular orbital theory (fully delocalized canonical orbitals or localized in some form), the concept of a lone pair is less distinct, as the correspondence between an orbital and components of a Lewis structure is often not straightforward. Nevertheless, occupied non-bonding orbitals (or orbitals of mostly nonbonding character) are frequently identified as lone pairs.
A ''single'' lone pair can be found with atoms in the nitrogen group, such as nitrogen in ammonia
Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
. ''Two'' lone pairs can be found with atoms in the chalcogen group, such as oxygen in water. The halogens can carry ''three'' lone pairs, such as in hydrogen chloride
The Chemical compound, compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hyd ...
.
In VSEPR theory the electron pairs on the oxygen atom in water form the vertices of a tetrahedron with the lone pairs on two of the four vertices. The H–O–H bond angle is 104.5°, less than the 109° predicted for a tetrahedral angle, and this can be explained by a repulsive interaction between the lone pairs.
Various computational criteria for the presence of lone pairs have been proposed. While electron density ρ(r) itself generally does not provide useful guidance in this regard, the Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
of the electron density is revealing, and one criterion for the location of the lone pair is where ''L''(r) ''= –''∇2ρ(r) is a local maximum. The minima of the electrostatic potential ''V''(r) is another proposed criterion. Yet another considers the electron localization function (ELF).
Angle changes
The pairs often exhibit a negative polar character with their high charge density and are located closer to the atomic nucleus
The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the Department_of_Physics_and_Astronomy,_University_of_Manchester , University of Manchester ...
on average compared to the bonding pair of electrons. The presence of a lone pair decreases the bond angle between the bonding pair of electrons, due to their high electric charge, which causes great repulsion between the electrons. They are also involved in the formation of a dative bond. For example, the creation of the hydronium (H3O+) ion occurs when acids are dissolved in water and is due to the oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
atom donating a lone pair to the hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
ion.
This can be seen more clearly when looked at it in two more common molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s. For example, in carbon dioxide
Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
(CO2), which does not have a lone pair, the oxygen atoms are on opposite sides of the carbon atom ( linear molecular geometry), whereas in water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
(H2O) which has two lone pairs, the angle between the hydrogen atoms is 104.5° ( bent molecular geometry). This is caused by the repulsive force of the oxygen atom's two lone pairs pushing the hydrogen atoms further apart, until the forces of all electrons on the hydrogen atom are in equilibrium. This is an illustration of the VSEPR theory.
Dipole moments
Lone pairs can contribute to a molecule's dipole moment. NH3 has a dipole moment of 1.42 D. As the electronegativity
Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of nitrogen (3.04) is greater than that of hydrogen (2.2) the result is that the N-H bonds are polar with a net negative charge on the nitrogen atom and a smaller net positive charge on the hydrogen atoms. There is also a dipole associated with the lone pair and this reinforces the contribution made by the polar covalent N-H bonds to ammonia's dipole moment. In contrast to NH3, NF3 has a much lower dipole moment of 0.234 D. Fluorine is more electronegative than nitrogen and the polarity of the N-F bonds is opposite to that of the N-H bonds in ammonia, so that the dipole due to the lone pair opposes the N-F bond dipoles, resulting in a low molecular dipole moment.
Stereogenic lone pairs
A lone pair can contribute to the existence of chirality in a molecule, when three other groups attached to an atom all differ. The effect is seen in certain amine
In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
s, phosphine
Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
s, sulfonium
In organic chemistry, a sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively-charged ion (a "cation") featuring three organic Substitution (chemistry), substituents attached to sulfur. These organosulfur compounds have t ...
and oxonium ions, sulfoxides, and even carbanions.
The resolution of enantiomers where the stereogenic center is an amine is usually precluded because the energy barrier for nitrogen inversion at the stereo center is low, which allow the two stereoisomers to rapidly interconvert at room temperature. As a result, such chiral amines cannot be resolved, unless the amine's groups are constrained in a cyclic structure (such as in Tröger's base).
Unusual lone pairs
A stereochemically active lone pair is also expected for divalent lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
and tin ions due to their formal electronic configuration of n''s''2. In the solid state this results in the distorted metal coordination observed in the tetragonal
In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the Cube (geometry), cube becomes a rectangular Pri ...
litharge structure adopted by both PbO and SnO.
The formation of these heavy metal n''s''2 lone pairs which was previously attributed to intra-atomic hybridization of the metal s and p states has recently been shown to have a strong anion dependence. This dependence on the electronic states of the anion can explain why some divalent lead and tin materials such as PbS and SnTe show no stereochemical evidence of the lone pair and adopt the symmetric rocksalt crystal structure.
In molecular systems the lone pair can also result in a distortion in the coordination of ligands around the metal ion. The lone-pair effect of lead can be observed in supramolecular complexes of lead(II) nitrate, and in 2007 a study linked the lone pair to lead poisoning
Lead poisoning, also known as plumbism and saturnism, is a type of metal poisoning caused by lead in the body. Symptoms may include abdominal pain, constipation, headaches, irritability, memory problems, infertility, numbness and paresthesia, t ...
. Lead ions can replace the native metal ions in several key enzymes, such as zinc cations in the ALAD enzyme, which is also known as porphobilinogen synthase, and is important in the synthesis of heme
Heme (American English), or haem (Commonwealth English, both pronounced /Help:IPA/English, hi:m/ ), is a ring-shaped iron-containing molecule that commonly serves as a Ligand (biochemistry), ligand of various proteins, more notably as a Prostheti ...
, a key component of the oxygen-carrying molecule hemoglobin
Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
. This inhibition of heme synthesis appears to be the molecular basis of lead poisoning (also called "saturnism" or "plumbism").
Computational experiments reveal that although the coordination number
In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion ...
does not change upon substitution in calcium-binding proteins, the introduction of lead distorts the way the ligands organize themselves to accommodate such an emerging lone pair: consequently, these proteins are perturbed. This lone-pair effect becomes dramatic for zinc-binding proteins, such as the above-mentioned porphobilinogen synthase, as the natural substrate cannot bind anymore – in those cases the protein is inhibited.
In Group 14 elements (the carbon group
The carbon group is a group (periodic table), periodic table group consisting of carbon (C), silicon (Si), germanium (Ge), tin (Sn), lead (Pb), and flerovium (Fl). It lies within the p-block.
In modern International Union of Pure and Applied Ch ...
), lone pairs can manifest themselves by shortening or lengthening single bond ( bond order 1) lengths, as well as in the effective order of triple bonds as well. The familiar alkynes have a carbon-carbon triple bond ( bond order 3) and a linear geometry of 180° bond angles (figure A in reference ). However, further down in the group (silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
, and tin), formal triple bonds have an effective bond order 2 with one lone pair (figure B) and trans-bent geometries. In lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
, the effective bond order is reduced even further to a single bond, with two lone pairs for each lead atom (figure ''C''). In the organogermanium compound
Organogermanium chemistry is the science of chemical species containing one or more Carbon, C–Germanium, Ge bonds. Germanium shares Carbon group, group 14 in the periodic table with carbon, silicon, tin and lead. Historically, organogermanes are ...
(''Scheme 1'' in the reference), the effective bond order is also 1, with complexation of the acidic isonitrile (or ''isocyanide'') C-N groups, based on interaction with germanium's empty 4p orbital.
Different descriptions for multiple lone pairs
In elementary chemistry courses, the lone pairs of water are described as "rabbit ears": two equivalent electron pairs of approximately sp3 hybridization, while the HOH bond angle is 104.5°, slightly smaller than the ideal tetrahedral angle of arccos(–1/3) ≈ 109.47°. The smaller bond angle is rationalized by VSEPR theory by ascribing a larger space requirement for the two identical lone pairs compared to the two bonding pairs. In more advanced courses, an alternative explanation for this phenomenon considers the greater stability of orbitals with excess s character using the theory of isovalent hybridization, in which bonds and lone pairs can be constructed with sp''x'' hybrids wherein nonintegral values of ''x'' are allowed, so long as the total amount of s and p character is conserved (one s and three p orbitals in the case of second-row p-block elements).
To determine the hybridization of oxygen orbitals used to form the bonding pairs and lone pairs of water in this picture, we use the formula 1 + ''x'' cos θ = 0, which relates bond angle θ with the hybridization index ''x''. According to this formula, the O–H bonds are considered to be constructed from O bonding orbitals of ~sp4.0 hybridization (~80% p character, ~20% s character), which leaves behind O lone pairs orbitals of ~sp2.3 hybridization (~70% p character, ~30% s character). These deviations from idealized sp3 hybridization (75% p character, 25% s character) for tetrahedral geometry are consistent with Bent's rule: lone pairs localize more electron density closer to the central atom compared to bonding pairs; hence, the use of orbitals with excess s character to form lone pairs (and, consequently, those with excess p character to form bonding pairs) is energetically favorable.
However, theoreticians often prefer an alternative description of water that separates the lone pairs of water according to symmetry with respect to the molecular plane. In this model, there are two energetically and geometrically distinct lone pairs of water possessing different symmetry: one (σ) in-plane and symmetric with respect to the molecular plane and the other (π) perpendicular and anti-symmetric with respect to the molecular plane. The σ-symmetry lone pair (σ(out)) is formed from a hybrid orbital that mixes 2s and 2p character, while the π-symmetry lone pair (p) is of exclusive 2p orbital parentage. The s character rich O σ(out) lone pair orbital (also notated ''n''O(σ)) is an ~sp0.7 hybrid (~40% p character, 60% s character), while the p lone pair orbital (also notated ''n''O(π)) consists of 100% p character.
Both models are of value and represent the same total electron density, with the orbitals related by a unitary transformation. In this case, we can construct the two equivalent lone pair hybrid orbitals ''h'' and ''h''' by taking linear combinations ''h'' = ''c''1σ(out) + ''c''2p and ''h''' = ''c''1σ(out) – ''c''2p for an appropriate choice of coefficients ''c''1 and ''c''2. For chemical and physical properties of water
Water () is a Chemical polarity, polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from Color of water, an inherent hint of blue. It is by far the most studied chemical compou ...
that depend on the ''overall'' electron distribution of the molecule, the use of ''h'' and ''h''' is just as valid as the use of σ(out) and p. In some cases, such a view is intuitively useful. For example, the stereoelectronic requirement for the anomeric effect can be rationalized using equivalent lone pairs, since it is the ''overall'' donation of electron density into the antibonding orbital that matters. An alternative treatment using σ/π separated lone pairs is also valid, but it requires striking a balance between maximizing ''n''O(π)-σ* overlap (maximum at 90° dihedral angle) and ''n''O(σ)-σ* overlap (maximum at 0° dihedral angle), a compromise that leads to the conclusion that a ''gauche'' conformation (60° dihedral angle) is most favorable, the same conclusion that the equivalent lone pairs model rationalizes in a much more straightforward manner. Similarly, the hydrogen bond
In chemistry, a hydrogen bond (H-bond) is a specific type of molecular interaction that exhibits partial covalent character and cannot be described as a purely electrostatic force. It occurs when a hydrogen (H) atom, Covalent bond, covalently b ...
s of water form along the directions of the "rabbit ears" lone pairs, as a reflection of the increased availability of electrons in these regions. This view is supported computationally. However, because only the symmetry-adapted canonical orbitals have physically meaningful energies, phenomena that have to do with the energies of ''individual'' orbitals, such as photochemical reactivity or photoelectron spectroscopy, are most readily explained using σ and π lone pairs that respect the molecular symmetry.
Because of the popularity of VSEPR theory, the treatment of the water lone pairs as equivalent is prevalent in introductory chemistry courses, and many practicing chemists continue to regard it as a useful model. A similar situation arises when describing the two lone pairs on the carbonyl oxygen atom of a ketone
In organic chemistry, a ketone is an organic compound with the structure , where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond C=O). The simplest ketone is acetone ( ...
. However, the question of whether it is conceptually useful to derive equivalent orbitals from symmetry-adapted ones, from the standpoint of bonding theory and pedagogy, is still a controversial one, with recent (2014 and 2015) articles opposing and supporting the practice.
See also
*Coordination complex
A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of chemical bond, bound molecules or ions, that are in turn known as ' ...
* HOMO and LUMO (highest occupied molecular orbital and lowest unoccupied molecular orbital)
* Inert-pair effect
*Ligand
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
*Shared pair
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
References
{{Chemical bonding theory
Chemical bonding