Livermorium
   HOME

TheInfoList



OR:

Livermorium is a synthetic chemical element; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Lv and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
116. It is an extremely
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
on May 30, 2012. Six isotopes of livermorium are known, with
mass number The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
s of 288–293 inclusive; the longest-lived among them is livermorium-293 with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of about 80  milliseconds. A seventh possible isotope with mass number 294 has been reported but not yet confirmed. In the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, it is a p-block
transactinide element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. The superheavy elements are those beyond the actinides in ...
. It is a member of the 7th period and is placed in group 16 as the heaviest
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the rad ...
, but it has not been confirmed to behave as the heavier homologue to the chalcogen polonium. Livermorium is calculated to have some similar properties to its lighter homologues (
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
,
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
,
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
,
tellurium Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
, and polonium), and be a
post-transition metal The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metal ...
, though it should also show several major differences from them.


Introduction


History


Unsuccessful synthesis attempts

The first search for element 116, using the reaction between 248Cm and 48Ca, was performed in 1977 by Ken Hulet and his team at the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
(LLNL). They were unable to detect any atoms of livermorium.
Yuri Oganessian Yuri Tsolakovich Oganessian (born 14 April 1933) is an Armenian and Russian nuclear physicist who is best known as a researcher of superheavy elements. He has led the discovery of multiple chemical elements. He succeeded Georgy Flyorov as dir ...
and his team at the Flerov Laboratory of Nuclear Reactions (FLNR) in the Joint Institute for Nuclear Research (JINR) subsequently attempted the reaction in 1978 and met failure. In 1985, in a joint experiment between Berkeley and Peter Armbruster's team at GSI, the result was again negative, with a calculated cross section limit of 10–100 pb. Work on reactions with 48Ca, which had proved very useful in the synthesis of
nobelium Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
from the natPb+48Ca reaction, nevertheless continued at Dubna, with a superheavy element separator being developed in 1989, a search for target materials and starting of collaborations with LLNL being started in 1990, production of more intense 48Ca beams being started in 1996, and preparations for long-term experiments with 3 orders of magnitude higher sensitivity being performed in the early 1990s. This work led directly to the production of new isotopes of elements 112 to 118 in the reactions of 48Ca with actinide targets and the discovery of the 5 heaviest elements on the periodic table: flerovium,
moscovium Moscovium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Resea ...
, livermorium,
tennessine Tennessine is a synthetic element; it has Chemical symbol, symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements and is the penultimate element of the Period 7 element, 7th ...
, and
oganesson Oganesson is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint ...
. In 1995, an international team led by Sigurd Hofmann at the Gesellschaft für Schwerionenforschung (GSI) in
Darmstadt Darmstadt () is a city in the States of Germany, state of Hesse in Germany, located in the southern part of the Frankfurt Rhine Main Area, Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the ...
,
Germany Germany, officially the Federal Republic of Germany, is a country in Central Europe. It lies between the Baltic Sea and the North Sea to the north and the Alps to the south. Its sixteen States of Germany, constituent states have a total popu ...
attempted to synthesise element 116 in a radiative capture reaction (in which the compound nucleus de-excites through pure gamma emission without evaporating neutrons) between a
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
-208 target and
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
-82 projectiles. No atoms of element 116 were identified.


Unconfirmed discovery claims

In late 1998, Polish physicist Robert Smolańczuk published calculations on the fusion of atomic nuclei towards the synthesis of superheavy atoms, including elements 118 and 116. His calculations suggested that it might be possible to make these two elements by fusing
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
with
krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
under carefully controlled conditions. In 1999, researchers at
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a Federally funded research and development centers, federally funded research and development center in the Berkeley Hills, hills of Berkeley, California, United States. Established i ...
made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in ''
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. The journal is considered one of the most prestigious in the field of physics ...
'', and very soon after the results were reported in ''
Science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
''. The researchers reported to have performed the reaction : + → + → + α The following year, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab itself was unable to duplicate them as well. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov. The isotope 289Lv was finally discovered in 2024 at the JINR.


Discovery

Livermorium was first synthesized on July 19, 2000, when scientists at Dubna ( JINR) bombarded a curium-248 target with accelerated calcium-48 ions. A single atom was detected, decaying by alpha emission with
decay energy The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energ ...
10.54  MeV to an isotope of flerovium. The results were published in December 2000. : + → * → + 3 → + α The daughter flerovium isotope had properties matching those of a flerovium isotope first synthesized in June 1999, which was originally assigned to 288Fl, implying an assignment of the parent livermorium isotope to 292Lv. Later work in December 2002 indicated that the synthesized flerovium isotope was actually 289Fl, and hence the assignment of the synthesized livermorium atom was correspondingly altered to 293Lv.


Road to confirmation

Two further atoms were reported by the institute during their second experiment during April–May 2001.248Cm(48Ca,4n)292116 experiment"">"Confirmed results of the 248Cm(48Ca,4n)292116 experiment"
, ''Patin et al.'', ''LLNL report (2003)''. Retrieved 2008-03-03
In the same experiment they also detected a decay chain which corresponded to the first observed decay of flerovium in December 1998, which had been assigned to 289Fl. No flerovium isotope with the same properties as the one found in December 1998 has ever been observed again, even in repeats of the same reaction. Later it was found that 289Fl has different decay properties and that the first observed flerovium atom may have been its nuclear isomer 289mFl. The observation of 289mFl in this series of experiments may indicate the formation of a parent isomer of livermorium, namely 293mLv, or a rare and previously unobserved decay branch of the already-discovered state 293Lv to 289mFl. Neither possibility is certain, and research is required to positively assign this activity. Another possibility suggested is the assignment of the original December 1998 atom to 290Fl, as the low beam energy used in that original experiment makes the 2n channel plausible; its parent could then conceivably be 294Lv, but this assignment would still need confirmation in the 248Cm(48Ca,2n)294Lv reaction. The team repeated the experiment in April–May 2005 and detected 8 atoms of livermorium. The measured decay data confirmed the assignment of the first-discovered
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
as 293Lv. In this run, the team also observed the isotope 292Lv for the first time. In further experiments from 2004 to 2006, the team replaced the curium-248 target with the lighter curium isotope curium-245. Here evidence was found for the two isotopes 290Lv and 291Lv. In May 2009, the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
/ IUPAP Joint Working Party reported on the discovery of
copernicium Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
and acknowledged the discovery of the isotope 283Cn. This implied the ''de facto'' discovery of the isotope 291Lv, from the acknowledgment of the data relating to its granddaughter 283Cn, although the livermorium data was not absolutely critical for the demonstration of copernicium's discovery. Also in 2009, confirmation from Berkeley and the Gesellschaft für Schwerionenforschung (GSI) in Germany came for the flerovium isotopes 286 to 289, immediate daughters of the four known livermorium isotopes. In 2011, IUPAC evaluated the Dubna team experiments of 2000–2006. Whereas they found the earliest data (not involving 291Lv and 283Cn) inconclusive, the results of 2004–2006 were accepted as identification of livermorium, and the element was officially recognized as having been discovered. The synthesis of livermorium has been separately confirmed at the GSI (2012) and RIKEN (2014 and 2016). In the 2012 GSI experiment, one chain tentatively assigned to 293Lv was shown to be inconsistent with previous data; it is believed that this chain may instead originate from an isomeric state, 293mLv. In the 2016 RIKEN experiment, one atom that may be assigned to 294Lv was seemingly detected, alpha decaying to 290Fl and 286Cn, which underwent spontaneous fission; however, the first alpha from the livermorium nuclide produced was missed, and the assignment to 294Lv is still uncertain though plausible.


Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, livermorium is sometimes called ''eka- polonium''. In 1979 IUPAC recommended that the placeholder systematic element name ''ununhexium'' (''Uuh'') be used until the discovery of the element was confirmed and a name was decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, " who called it "element 116", with the symbol of ''E116'', ''(116)'', or even simply ''116''. According to IUPAC recommendations, the discoverer or discoverers of a new element have the right to suggest a name. The discovery of livermorium was recognized by the Joint Working Party (JWP) of IUPAC on 1 June 2011, along with that of flerovium. According to the vice-director of JINR, the Dubna team originally wanted to name element 116 ''moscovium'', after the
Moscow Oblast Moscow Oblast (, , informally known as , ) is a federal subjects of Russia, federal subject of Russia (an oblast). With a population of 8,524,665 (Russian Census (2021), 2021 Census) living in an area of , it is one of the most densely populate ...
in which Dubna is located,: Mikhail Itkis, the vice-director of JINR stated: "We would like to name element 114 after Georgy Flerov – flerovium, and another one lement 116– moscovium, not after Moscow, but after
Moscow Oblast Moscow Oblast (, , informally known as , ) is a federal subjects of Russia, federal subject of Russia (an oblast). With a population of 8,524,665 (Russian Census (2021), 2021 Census) living in an area of , it is one of the most densely populate ...
".
but it was later decided to use this name for element 115 instead. The name ''livermorium'' and the symbol ''Lv'' were adopted on May 23, 2012. The name recognises the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
, within the city of Livermore, California, US, which collaborated with JINR on the discovery. The city in turn is named after the American rancher Robert Livermore, a naturalized Mexican citizen of English birth. The naming ceremony for flerovium and livermorium was held in Moscow on October 24, 2012.


Other routes of synthesis

The synthesis of livermorium in fusion reactions using projectiles heavier than 48Ca has been explored in preparation for synthesis attempts of the yet-undiscovered element 120, as such reactions would necessarily utilize heavier projectiles. In 2023, the reaction between 238U and 54Cr was studied at the JINR's Superheavy Element Factory in Dubna; one atom of the new isotope 288Lv was reported, though more detailed analysis has not yet been published. Similarly, in 2024, a team at the
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a Federally funded research and development centers, federally funded research and development center in the Berkeley Hills, hills of Berkeley, California, United States. Established i ...
reported the synthesis of two atoms of 290Lv in the reaction between 244Pu and 50Ti. This result was described as "truly groundbreaking" by RIKEN director Hiromitsu Haba, whose team plans to search for element 119. The team at JINR studied the reaction between 242Pu and 50Ti in 2024 as a follow-up to the 238U+54Cr, obtaining additional decay data for 288Lv and its decay products and discovering the new isotope 289Lv.


Predicted properties

Other than nuclear properties, no properties of livermorium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that it decays very quickly. Properties of livermorium remain unknown and only predictions are available.


Nuclear stability and isotopes

Livermorium is expected to be near an island of stability centered on
copernicium Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
(element 112) and flerovium (element 114). Due to the expected high fission barriers, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. While the known isotopes of livermorium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island, as the heavier isotopes are generally the longer-lived ones. Superheavy elements are produced by
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
. These fusion reactions can be divided into "hot" and "cold" fusion, depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
s), giving rise to compound nuclei at high excitation energy (~40–50  MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions (which use heavier projectiles, typically from the fourth period, and lighter targets, usually
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
and
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
), the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
, they require emission of only one or two neutrons. Hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any elements that can presently be made in macroscopic quantities. Important information could be gained regarding the properties of superheavy nuclei by the synthesis of more livermorium isotopes, specifically those with a few neutrons more or less than the known ones – 286Lv, 287Lv, 294Lv, and 295Lv. This is possible because there are many reasonably long-lived isotopes of curium that can be used to make a target. The light isotopes can be made by fusing curium-243 with calcium-48. They would undergo a chain of alpha decays, ending at transactinide isotopes that are too light to achieve by hot fusion and too heavy to be produced by cold fusion. The same neutron-deficient isotopes are also reachable in reactions with projectiles heavier than 48Ca, which will be necessary to reach elements beyond atomic number 118 (or possibly 119); this is how 288Lv and 289Lv were discovered. The synthesis of the heavy isotopes 294Lv and 295Lv could be accomplished by fusing the heavy curium isotope curium-250 with calcium-48. The cross section of this nuclear reaction would be about 1  picobarn, though it is not yet possible to produce 250Cm in the quantities needed for target manufacture. Alternatively, 294Lv could be produced via charged-particle evaporation in the 251Cf(48Ca,pn) reaction. After a few alpha decays, these livermorium isotopes would reach nuclides at the line of beta stability. Additionally,
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
may also become an important decay mode in this region, allowing affected nuclei to reach the middle of the island. For example, it is predicted that 295Lv would alpha decay to 291 Fl, which would undergo successive electron capture to 291Nh and then 291 Cn which is expected to be in the middle of the island of stability and have a half-life of about 1200 years, affording the most likely hope of reaching the middle of the island using current technology. A drawback is that the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored. Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus. Such nuclei tend to fission, expelling doubly magic or nearly doubly magic fragments such as calcium-40, tin-132,
lead-208 Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay ...
, or
bismuth-209 Bismuth-209 (Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass unit ...
. Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and curium) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability, although formation of the lighter elements
nobelium Nobelium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol No and atomic number 102. It is named after Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transura ...
or
seaborgium Seaborgium is a synthetic chemical element; it has symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is als ...
is more favored. One last possibility to synthesize isotopes near the island is to use controlled nuclear explosions to create a neutron flux high enough to bypass the gaps of instability at 258–260 Fm and at
mass number The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
275 (atomic numbers 104 to 108), mimicking the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
in which the
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
s were first produced in nature and the gap of instability around
radon Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to b ...
bypassed. Some such isotopes (especially 291Cn and 293Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10−12 the abundance of
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
) to be detectable as primordial nuclides today outside
cosmic ray Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s.


Physical and atomic

In the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, livermorium is a member of group 16, the chalcogens. It appears below
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
,
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
,
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
,
tellurium Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
, and polonium. Every previous chalcogen has six electrons in its valence shell, forming a
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
configuration of ns2np4. In livermorium's case, the trend should be continued and the valence electron configuration is predicted to be 7s27p4; therefore, livermorium will have some similarities to its lighter congeners. Differences are likely to arise; a large contributing effect is the spin–orbit (SO) interaction—the mutual interaction between the electrons' motion and spin. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. In relation to livermorium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four. The stabilization of the 7s electrons is called the
inert pair effect The inert-pair effect is the tendency of the two electrons in the outermost atomic ''s''-orbital to remain unshared in compounds of post-transition metals. The term ''inert-pair effect'' is often used in relation to the increasing stability of o ...
, and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second ( azimuthal)
quantum number In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
''l'' from 1 to and for the more stabilized and less stabilized parts of the 7p subshell, respectively: the 7p1/2 subshell acts as a second inert pair, though not as inert as the 7s electrons, while the 7p3/2 subshell can easily participate in chemistry. For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s7p7p. Inert pair effects in livermorium should be even stronger than in polonium and hence the +2
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
becomes more stable than the +4 state, which would be stabilized only by the most electronegative
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
s; this is reflected in the expected ionization energies of livermorium, where there are large gaps between the second and third ionization energies (corresponding to the breaching of the unreactive 7p1/2 shell) and fourth and fifth ionization energies. Indeed, the 7s electrons are expected to be so inert that the +6 state will not be attainable. The
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
s of livermorium are expected to continue the trends down the chalcogens; thus livermorium should melt at a higher temperature than polonium, but boil at a lower temperature. It should also be denser than polonium (α-Lv: 12.9 g/cm3; α-Po: 9.2 g/cm3); like polonium it should also form an α and a β allotrope. The electron of a hydrogen-like livermorium atom (oxidized so that it only has one electron, Lv115+) is expected to move so fast that it has a mass 1.86 times that of a stationary electron, due to relativistic effects. For comparison, the figures for hydrogen-like polonium and tellurium are expected to be 1.26 and 1.080 respectively.


Chemical

Livermorium is projected to be the fourth member of the 7p series of
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s and the heaviest member of group 16 in the periodic table, below polonium. While it is the least theoretically studied of the 7p elements, its chemistry is expected to be quite similar to that of polonium. The group oxidation state of +6 is known for all the chalcogens apart from oxygen which cannot expand its octet and is one of the strongest oxidizing agents among the chemical elements. Oxygen is thus limited to a maximum +2 state, exhibited in the fluoride OF2. The +4 state is known for
sulfur Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
,
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
,
tellurium Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally fou ...
, and polonium, undergoing a shift in stability from reducing for sulfur(IV) and selenium(IV) through being the most stable state for tellurium(IV) to being oxidizing in polonium(IV). This suggests a decreasing stability for the higher oxidation states as the group is descended due to the increasing importance of relativistic effects, especially the inert pair effect. The most stable oxidation state of livermorium should thus be +2, with a rather unstable +4 state. The +2 state should be about as easy to form as it is for
beryllium Beryllium is a chemical element; it has Symbol (chemistry), symbol Be and atomic number 4. It is a steel-gray, hard, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with ...
and
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
, and the +4 state should only be achieved with strongly electronegative ligands, such as in livermorium(IV) fluoride (LvF4). The +6 state should not exist at all due to the very strong stabilization of the 7s electrons, making the valence core of livermorium only four electrons. The lighter chalcogens are also known to form a −2 state as
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
,
sulfide Sulfide (also sulphide in British English) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to large families o ...
, selenide, telluride, and polonide; due to the destabilization of livermorium's 7p3/2 subshell, the −2 state should be very unstable for livermorium, whose chemistry should be essentially purely cationic, though the larger subshell and spinor energy splittings of livermorium as compared to polonium should make Lv2− slightly less unstable than expected. Livermorium hydride (LvH2) would be the heaviest chalcogen hydride and the heaviest homolog of
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
(the lighter ones are H2S, H2Se, H2Te, and PoH2). Polane (polonium hydride) is a more
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
compound than most metal hydrides because polonium straddles the border between
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
and
metalloid A metalloid is a chemical element which has a preponderance of material property, properties in between, or that are a mixture of, those of metals and Nonmetal (chemistry), nonmetals. The word metalloid comes from the Latin language, Latin ''meta ...
and has some nonmetallic properties: it is intermediate between a hydrogen halide like
hydrogen chloride The Chemical compound, compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hyd ...
(HCl) and a metal hydride like stannane ( SnH4). Livermorane should continue this trend: it should be a hydride rather than a livermoride, but still a covalent molecular compound. Spin-orbit interactions are expected to make the Lv–H bond longer than expected from
periodic trends In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain Chemical element, elements when grouped by period (periodic table), period and/or Group (periodic table), group. They w ...
alone, and make the H–Lv–H bond angle larger than expected: this is theorized to be because the unoccupied 8s orbitals are relatively low in energy and can hybridize with the valence 7p orbitals of livermorium. This phenomenon, dubbed "supervalent hybridization", has some analogues in non-relativistic regions in the periodic table; for example, molecular calcium difluoride has 4s and 3d involvement from the
calcium Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to it ...
atom. The heavier livermorium di halides are predicted to be
linear In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a '' polynomial''. An example of a linear function is the function defined by f(x) ...
, but the lighter ones are predicted to be bent.


Experimental chemistry

Unambiguous determination of the chemical characteristics of livermorium has not yet been established. In 2011, experiments were conducted to create nihonium, flerovium, and
moscovium Moscovium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Resea ...
isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and plutonium-244. The targets included
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
and
bismuth Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs nat ...
impurities and hence some isotopes of bismuth and polonium were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium. The produced nuclides bismuth-213 and polonium-212m were transported as the hydrides 213BiH3 and 212mPoH2 at 850 °C through a quartz wool filter unit held with
tantalum Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
, showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH3 and LvH2 would be expected to be less thermally stable from simple extrapolation of
periodic trends In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain Chemical element, elements when grouped by period (periodic table), period and/or Group (periodic table), group. They w ...
in the p-block. Further calculations on the stability and electronic structure of BiH3, McH3, PoH2, and LvH2 are needed before chemical investigations take place. Moscovium and livermorium are expected to be volatile enough as pure elements for them to be chemically investigated in the near future, a property livermorium would then share with its lighter congener polonium, though the short half-lives of all presently known livermorium isotopes means that the element is still inaccessible to experimental chemistry.


Notes


References


Bibliography

* * * *


External links


Livermorium
at ''
The Periodic Table of Videos ''Periodic Videos'' (also known as ''The Periodic Table of Videos'') is a video project and YouTube channel on chemistry. It consists of a series of videos about chemical elements and the periodic table, with additional videos on other topics i ...
'' (University of Nottingham)
''CERN Courier'' – Second postcard from the island of stability

Livermorium at WebElements.com
{{Authority control Chalcogens Chemical elements Ernest Lawrence Synthetic elements