HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an isomorphism is a structure-preserving mapping or
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In
mathematical jargon The language of mathematics has a wide vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in ...
, one says that two objects are the same
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
are isomorphic and cannot be identified. An
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as is the case for solutions of a
universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
), or if the isomorphism is much more natural (in some sense) than other isomorphisms. For example, for every
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
, all fields with elements are canonically isomorphic, with a unique isomorphism. The
isomorphism theorems In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist f ...
provide canonical isomorphisms that are not unique. The term is mainly used for
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s and categories. In the case of algebraic structures, mappings are called
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s, and a homomorphism is an isomorphism
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
it is
bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
. In various areas of mathematics, isomorphisms have received specialized names, depending on the type of structure under consideration. For example: * An
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
is an isomorphism of
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
s. * A
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
is an isomorphism of
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s. * A
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
is an isomorphism of spaces equipped with a
differential structure In mathematics, an ''n''- dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for ...
, typically
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ...
s. * A
symplectomorphism In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the ...
is an isomorphism of
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
s. * A
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
is an automorphism of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
. * In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, isomorphisms and automorphisms are often called transformations, for example
rigid transformation In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformation ...
s,
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
s,
projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
s.
Category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, which can be viewed as a formalization of the concept of mapping between structures, provides a language that may be used to unify the approach to these different aspects of the basic idea.


Examples


Logarithm and exponential

Let \R ^+ be the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of
positive real numbers In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used fo ...
, and let \R be the additive group of real numbers. The logarithm function \log : \R^+ \to \R satisfies \log(xy) = \log x + \log y for all x, y \in \R^+, so it is a
group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
. The exponential function \exp : \R \to \R^+ satisfies \exp(x+y) = (\exp x)(\exp y) for all x, y \in \R, so it too is a homomorphism. The identities \log \exp x = x and \exp \log y = y show that \log and \exp are inverses of each other. Since \log is a homomorphism that has an inverse that is also a homomorphism, \log is an isomorphism of groups, i.e., \R^+ \cong \R via the isomorphism \log x. The \log function is an isomorphism which translates multiplication of positive real numbers into addition of real numbers. This facility makes it possible to multiply real numbers using a
ruler A ruler, sometimes called a rule, scale, line gauge, or metre/meter stick, is an instrument used to make length measurements, whereby a length is read from a series of markings called "rules" along an edge of the device. Usually, the instr ...
and a table of logarithms, or using a
slide rule A slide rule is a hand-operated mechanical calculator consisting of slidable rulers for conducting mathematical operations such as multiplication, division, exponents, roots, logarithms, and trigonometry. It is one of the simplest analog ...
with a logarithmic scale.


Integers modulo 6

Consider the group (\Z_6, +), the integers from 0 to 5 with addition
modulo In computing and mathematics, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, the latter being called the '' modulus'' of the operation. Given two positive numbers and , mo ...
 6. Also consider the group \left(\Z_2 \times \Z_3, +\right), the ordered pairs where the ''x'' coordinates can be 0 or 1, and the y coordinates can be 0, 1, or 2, where addition in the ''x''-coordinate is modulo 2 and addition in the ''y''-coordinate is modulo 3. These structures are isomorphic under addition, under the following scheme: \begin (0, 0) &\mapsto 0 \\ (1, 1) &\mapsto 1 \\ (0, 2) &\mapsto 2 \\ (1, 0) &\mapsto 3 \\ (0, 1) &\mapsto 4 \\ (1, 2) &\mapsto 5 \\ \end or in general (a, b) \mapsto (3 a + 4 b) \mod 6. For example, (1, 1) + (1, 0) = (0, 1), which translates in the other system as 1 + 3 = 4. Even though these two groups "look" different in that the sets contain different elements, they are indeed isomorphic: their structures are exactly the same. More generally, the direct product of two
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
s \Z_m and \Z_n is isomorphic to (\Z_, +) if and only if ''m'' and ''n'' are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
, per the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
.


Relation-preserving isomorphism

If one object consists of a set ''X'' with a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
R and the other object consists of a set ''Y'' with a binary relation S then an isomorphism from ''X'' to ''Y'' is a bijective function f : X \to Y such that: \operatorname(f(u),f(v)) \quad \text \quad \operatorname(u,v) S is reflexive,
irreflexive In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A ...
,
symmetric Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
, antisymmetric, asymmetric, transitive, total, trichotomous, a
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
,
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
,
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
,
strict weak order In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered set ...
, total preorder (weak order), an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
, or a relation with any other special properties, if and only if R is. For example, R is an ordering ≤ and S an ordering \scriptstyle \sqsubseteq, then an isomorphism from ''X'' to ''Y'' is a bijective function f : X \to Y such that f(u) \sqsubseteq f(v) \quad \text \quad u \leq v. Such an isomorphism is called an or (less commonly) an . If X = Y, then this is a relation-preserving
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
.


Applications

In
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, isomorphisms are defined for all
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s. Some are more specifically studied; for example: *
Linear isomorphism In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
s between
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s; they are specified by
invertible matrices In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
. *
Group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
s between groups; the classification of
isomorphism class In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them ...
es of
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s is an open problem. *
Ring isomorphism In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity ...
between rings. * Field isomorphisms are the same as ring isomorphism between fields; their study, and more specifically the study of field automorphisms is an important part of
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
. Just as the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
s of an
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
form a group, the isomorphisms between two algebras sharing a common structure form a heap. Letting a particular isomorphism identify the two structures turns this heap into a group. In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, the
Laplace transform In mathematics, the Laplace transform, named after Pierre-Simon Laplace (), is an integral transform that converts a Function (mathematics), function of a Real number, real Variable (mathematics), variable (usually t, in the ''time domain'') to a f ...
is an isomorphism mapping hard differential equations into easier
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
ic equations. In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, an isomorphism between two graphs ''G'' and ''H'' is a
bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
map ''f'' from the vertices of ''G'' to the vertices of ''H'' that preserves the "edge structure" in the sense that there is an edge from vertex ''u'' to vertex ''v'' in ''G'' if and only if there is an edge from f(u) to f(v) in ''H''. See
graph isomorphism In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H'' : f \colon V(G) \to V(H) such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) a ...
. In
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, an isomorphism between two partially ordered sets ''P'' and ''Q'' is a
bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
map f from ''P'' to ''Q'' that preserves the order structure in the sense that for any elements x and y of ''P'' we have x less than y in ''P'' if and only if f(x) is less than f(y) in ''Q''. As an example, the set of whole numbers ordered by the ''is-a-factor-of'' relation is isomorphic to the set of
blood types Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood is comp ...
ordered by the ''can-donate-to'' relation. See
order isomorphism In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be co ...
. In mathematical analysis, an isomorphism between two
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
s is a bijection preserving addition, scalar multiplication, and inner product. In early theories of
logical atomism Logical atomism is a philosophical view that originated in the early 20th century with the development of analytic philosophy. It holds that the world consists of ultimate logical "facts" (or "atoms") that cannot be broken down any further, each ...
, the formal relationship between facts and true propositions was theorized by
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
and
Ludwig Wittgenstein Ludwig Josef Johann Wittgenstein ( ; ; 26 April 1889 – 29 April 1951) was an Austrian philosopher who worked primarily in logic, the philosophy of mathematics, the philosophy of mind, and the philosophy of language. From 1929 to 1947, Witt ...
to be isomorphic. An example of this line of thinking can be found in Russell's '' Introduction to Mathematical Philosophy''. In
cybernetics Cybernetics is the transdisciplinary study of circular causal processes such as feedback and recursion, where the effects of a system's actions (its outputs) return as inputs to that system, influencing subsequent action. It is concerned with ...
, the good regulator theorem or Conant–Ashby theorem is stated as "Every good regulator of a system must be a model of that system". Whether regulated or self-regulating, an isomorphism is required between the regulator and processing parts of the system.


Category theoretic view

In
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
, given a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
''C'', an isomorphism is a morphism f : a \to b that has an inverse morphism g : b \to a, that is, f g = 1_b and g f = 1_a. Two categories and are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
if there exist
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s F : C \to D and G : D \to C which are mutually inverse to each other, that is, FG = 1_D (the identity functor on ) and GF = 1_C (the identity functor on ).


Isomorphism vs. bijective morphism

In a
concrete category In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category). This functor makes it possible to think of the objects of the category as sets with additional ...
(roughly, a category whose objects are sets (perhaps with extra structure) and whose morphisms are structure-preserving functions), such as the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again con ...
or categories of algebraic objects (like the
category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
, the
category of rings In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings i ...
, and the
category of modules In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ...
), an isomorphism must be bijective on the underlying sets. In algebraic categories (specifically, categories of varieties in the sense of universal algebra), an isomorphism is the same as a homomorphism which is bijective on underlying sets. However, there are concrete categories in which bijective morphisms are not necessarily isomorphisms (such as the category of topological spaces).


Isomorphism class

Since a composition of isomorphisms is an isomorphism, the identity is an isomorphism, and the inverse of an isomorphism is an isomorphism, the relation that two mathematical objects are isomorphic is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
. An
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
given by isomorphisms is commonly called an isomorphism class.


Examples

Examples of isomorphism classes are plentiful in mathematics. * Two sets are isomorphic if there is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
between them. The isomorphism class of a finite set can be identified with the non-negative integer representing the number of elements it contains. * The isomorphism class of a
finite-dimensional vector space In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
can be identified with the non-negative integer representing its dimension. * The
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
enumerates the isomorphism classes of all finite simple groups. * The classification of closed surfaces enumerates the isomorphism classes of all connected closed surfaces. * Ordinals are essentially defined as isomorphism classes of well-ordered sets (though there are technical issues involved). * There are three isomorphism classes of the planar
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear opera ...
s of M(2,R), the 2 x 2 real matrices. However, there are circumstances in which the isomorphism class of an object conceals vital information about it. * Given a
mathematical structure In mathematics, a structure on a set (or on some sets) refers to providing or endowing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the ...
, it is common that two substructures belong to the same isomorphism class. However, the way they are included in the whole structure can not be studied if they are identified. For example, in a finite-dimensional vector space, all subspaces of the same dimension are isomorphic, but must be distinguished to consider their intersection, sum, etc. * In
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
of a
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
X at a point p, though technically denoted \pi_1(X,p) to emphasize the dependence on the base point, is often written lazily as simply \pi_1(X) if X is
path connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union (set theory), union of two or more disjoint set, disjoint Empty set, non-empty open (topology), open subsets. Conne ...
. The reason for this is that the existence of a path between two points allows one to identify loops at one with loops at the other; however, unless \pi_1(X,p) is abelian this isomorphism is non-unique. Furthermore, the classification of
covering space In topology, a covering or covering projection is a continuous function, map between topological spaces that, intuitively, Local property, locally acts like a Projection (mathematics), projection of multiple copies of a space onto itself. In par ...
s makes strict reference to particular
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
s of \pi_1(X,p), specifically distinguishing between isomorphic but conjugate subgroups, and therefore amalgamating the elements of an isomorphism class into a single featureless object seriously decreases the level of detail provided by the theory.


Relation to equality

Although there are cases where isomorphic objects can be considered equal, one must distinguish and . Equality is when two objects are the same, and therefore everything that is true about one object is true about the other. On the other hand, isomorphisms are related to some structure, and two isomorphic objects share only the properties that are related to this structure. For example, the sets A = \left\ \quad \text \quad B = \ are ; they are merely different representations—the first an intensional one (in
set builder notation In mathematics and more specifically in set theory, set-builder notation is a notation for specifying a set by a property that characterizes its members. Specifying sets by member properties is allowed by the axiom schema of specification. This ...
), and the second extensional (by explicit enumeration)—of the same subset of the integers. By contrast, the sets \ and \ are not since they do not have the same elements. They are isomorphic as sets, but there are many choices (in fact 6) of an isomorphism between them: one isomorphism is :\text \mapsto 1, \text \mapsto 2, \text \mapsto 3, while another is :\text \mapsto 3, \text \mapsto 2, \text \mapsto 1, and no one isomorphism is intrinsically better than any other.A, B, C have a conventional order, namely the alphabetical order, and similarly 1, 2, 3 have the usual order of the integers. Viewed as ordered sets, there is only one isomorphism between them, namely \text \mapsto 1, \text \mapsto 2, \text \mapsto 3. On this view and in this sense, these two sets are not equal because one cannot consider them : one can choose an isomorphism between them, but that is a weaker claim than identity and valid only in the context of the chosen isomorphism. Also,
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s and
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
s are isomorphic as
ordered set In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; ...
s and
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s (for addition), but cannot be considered equal sets, since one is a
proper subset In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...
of the other. On the other hand, when sets (or other
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s) are defined only by their properties, without considering the nature of their elements, one often considers them to be equal. This is generally the case with solutions of universal properties. For example, the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s are formally defined as
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of pairs of integers, although nobody thinks of a rational number as a set (equivalence class). The universal property of the rational numbers is essentially that they form a field that contains the integers and does not contain any proper subfield. Given two fields with these properties, there is a unique field isomorphism between them. This allows identifying these two fields, since every property of one of them can be transferred to the other through the isomorphism. The
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s that can be expressed as a quotient of integers form the smallest subfield of the reals. There is thus a unique isomorphism from this subfield of the reals to the rational numbers defined by equivalence classes.


See also

* Bisimulation *
Equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
* Heap (mathematics) *
Isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
*
Isomorphism class In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them ...
*
Isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for ...
*
Universal property In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently fro ...
*
Coherent isomorphism In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold "up to homotopy" or "up to isomorphism". The adjectives such as "pseudo-" and "lax-" ...
* Balanced category


Notes


References


Further reading

*


External links

* * {{Authority control Morphisms Equivalence (mathematics)