Quantum mechanics is the study of
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
and its interactions with
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
on the
scale of
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
ic and
subatomic particles
In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, like ...
. By contrast,
classical physics
Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the Moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (
macro) and the small (
micro
Micro may refer to:
Measurement
* micro- (μ), a metric prefix denoting a factor of 10−6
Places
* Micro, North Carolina, town in U.S.
People
* DJ Micro, (born Michael Marsicano) an American trance DJ and producer
* Chii Tomiya (都宮 � ...
) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original
scientific paradigm: the development of
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
.
Many aspects of quantum mechanics are counterintuitive and can seem
paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
ical because they describe behavior quite different from that seen at larger scales. In the words of quantum physicist
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
, quantum mechanics deals with "nature as She is—absurd". Features of quantum mechanics often defy simple explanations in everyday language. One example of this is the
uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
: precise measurements of position cannot be combined with precise measurements of velocity. Another example is
entanglement: a measurement made on one particle (such as an
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
that is measured to have
spin 'up') will correlate with a measurement on a second particle (an electron will be found to have spin 'down') if the two particles have a shared history. This will apply even if it is impossible for the result of the first measurement to have been transmitted to the second particle before the second measurement takes place.
Quantum mechanics helps people understand
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, because it explains how atoms interact with each other and form
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s. Many remarkable phenomena can be explained using quantum mechanics, like
superfluidity
Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
. For example, if liquid
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
cooled to a temperature near
absolute zero
Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
is placed in a container, it spontaneously flows up and over the rim of its container; this is an effect which cannot be explained by classical physics.
History
James C. Maxwell's
unification of the equations governing electricity, magnetism, and light in the late 19th century led to experiments on the interaction of light and matter. Some of these experiments had aspects which could not be explained until quantum mechanics emerged in the early part of the 20th century.
Evidence of quanta from the photoelectric effect
The seeds of the quantum revolution appear in the discovery by
J.J. Thomson
Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was an English physicist who received the Nobel Prize in Physics in 1906 "in recognition of the great merits of his theoretical and experimental investigations on the conduction of ...
in 1897 that
cathode rays
Cathode rays are streams of electrons observed in vacuum tube, discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitte ...
were not continuous but "corpuscles" (
electrons
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
). Electrons had been named just six years earlier as part of the emerging theory of
atoms
Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
. In 1900,
Max Planck
Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918.
Planck made many substantial con ...
, unconvinced by the
atomic theory
Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries. Initially, it referred to a hypothetical concept of ...
, discovered that he needed discrete entities like atoms or electrons to explain
black-body radiation
Black-body radiation is the thermal radiation, thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific ...
.

Very hot – red hot or white hot – objects look similar when heated to the same temperature. This look results from a common curve of light intensity at different frequencies (colors), which is called black-body radiation. White hot objects have intensity across many colors in the visible range. The lowest frequencies above visible colors are
infrared light
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those o ...
, which also give off heat. Continuous wave theories of light and matter cannot explain the black-body radiation curve. Planck spread the heat energy among individual "oscillators" of an undefined character but with discrete energy capacity; this model explained black-body radiation.
At the time, electrons, atoms, and discrete oscillators were all exotic ideas to explain exotic phenomena. But in 1905
Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
proposed that light was also corpuscular, consisting of "energy quanta", in contradiction to the established science of light as a continuous wave, stretching back a hundred years to
Thomas Young's work on
diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
.
Einstein's revolutionary proposal started by reanalyzing Planck's black-body theory, arriving at the same conclusions by using the new "energy quanta". Einstein then showed how energy quanta connected to Thomson's electron. In 1902,
Philipp Lenard
Philipp Eduard Anton von Lenard (; ; 7 June 1862 – 20 May 1947) was a Hungarian-German physicist who received the Nobel Prize in Physics in 1905 "for his work on cathode rays" and the discovery of many of their properties. One of his most im ...
directed light from an arc lamp onto freshly cleaned metal plates housed in an evacuated glass tube. He measured the electric current coming off the metal plate, at higher and lower intensities of light and for different metals. Lenard showed that amount of current – the number of electrons – depended on the intensity of the light, but that the velocity of these electrons did not depend on intensity. This is the
photoelectric effect
The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physi ...
. The continuous wave theories of the time predicted that more light intensity would accelerate the same amount of current to higher velocity, contrary to this experiment. Einstein's energy quanta explained the volume increase: one electron is ejected for each quantum: more quanta mean more electrons.
[
Einstein then predicted that the electron velocity would increase in direct proportion to the light frequency above a fixed value that depended upon the metal. Here the idea is that energy in energy-quanta depends upon the light frequency; the energy transferred to the electron comes in proportion to the light frequency. The type of metal gives a barrier, the fixed value, that the electrons must climb over to exit their atoms, to be emitted from the metal surface and be measured.
Ten years elapsed before Millikan's definitive experiment verified Einstein's prediction. During that time many scientists rejected the revolutionary idea of quanta.] But Planck's and Einstein's concept was in the air and soon began to affect other physics and quantum theories.
Quantization of bound electrons in atoms
Experiments with light and matter in the late 1800s uncovered a reproducible but puzzling regularity. When light was shown through purified gases, certain frequencies (colors) did not pass. These dark absorption 'lines' followed a distinctive pattern: the gaps between the lines decreased steadily. By 1889, the Rydberg formula
In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
predicted the lines for hydrogen gas using only a constant number and the integers to index the lines.[ The origin of this regularity was unknown. Solving this mystery would eventually become the first major step toward quantum mechanics.
Throughout the 19th century evidence grew for the atomic nature of matter. With Thomson's discovery of the electron in 1897, scientist began the search for a model of the interior of the atom. Thomson proposed negative electrons swimming in a pool of positive charge. Between 1908 and 1911, Rutherford showed that the positive part was only 1/3000th of the diameter of the atom.][
Models of "planetary" electrons orbiting a nuclear "Sun" were proposed, but cannot explain why the electron does not simply fall into the positive charge. In 1913 ]Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
and Ernest Rutherford
Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
connected the new atom models to the mystery of the Rydberg formula: the orbital radius of the electrons were constrained and the resulting energy differences matched the energy differences in the absorption lines. This meant that absorption and emission of light from atoms was energy quantized: only specific energies that matched the difference in orbital energy would be emitted or absorbed.[
Trading one mystery – the regular pattern of the Rydberg formula – for another mystery – constraints on electron orbits – might not seem like a big advance, but the new atom model summarized many other experimental findings. The quantization of the photoelectric effect and now the quantization of the electron orbits set the stage for the final revolution.
Throughout the first and the modern era of quantum mechanics the concept that classical mechanics must be valid macroscopically constrained possible quantum models. This concept was formalized by Bohr in 1923 as the ]correspondence principle
In physics, a correspondence principle is any one of several premises or assertions about the relationship between classical and quantum mechanics.
The physicist Niels Bohr coined the term in 1920 during the early development of quantum theory; ...
. It requires quantum theory to converge to classical limits.
A related concept is Ehrenfest's theorem, which shows that the average values obtained from quantum mechanics (e.g. position and momentum) obey classical laws.
Quantization of spin
In 1922 Otto Stern
:''Otto Stern was also the pen name of German women's rights activist Louise Otto-Peters (1819–1895)''.
Otto Stern (; 17 February 1888 – 17 August 1969) was a German-American physicist. He is the second most nominated person for a Nobel Pri ...
and Walther Gerlach demonstrated that the magnetic properties of silver atoms defy classical explanation, the work contributing to Stern’s 1943 Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
. They fired a beam of silver atoms through a magnetic field. According to classical physics, the atoms should have emerged in a spray, with a continuous range of directions. Instead, the beam separated into two, and only two, diverging streams of atoms. Unlike the other quantum effects known at the time, this striking result involves the state of a single atom. In 1927, T.E. Phipps and J.B. Taylor obtained a similar, but less pronounced effect using hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
atoms in their ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
, thereby eliminating any doubts that may have been caused by the use of silver
Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
atoms.
In 1924, Wolfgang Pauli called it "two-valuedness not describable classically" and associated it with electrons in the outermost shell. The experiments lead to formulation of its theory described to arise from spin of the electron in 1925, by Samuel Goudsmit
Samuel Abraham Goudsmit (July 11, 1902 – December 4, 1978) was a Dutch-American physicist famous for jointly proposing the concept of electron spin with George Eugene Uhlenbeck in 1925.
Life and career
Goudsmit was born in The Hague, Ne ...
and George Uhlenbeck
George Eugene Uhlenbeck (December 6, 1900 – October 31, 1988) was a Dutch-American theoretical physicist, known for his significant contributions to quantum mechanics and statistical mechanics. He co-developed the concept of electron spin, alo ...
, under the advice of Paul Ehrenfest
Paul Ehrenfest (; 18 January 1880 – 25 September 1933) was an Austrian Theoretical physics, theoretical physicist who made major contributions to statistical mechanics and its relation to quantum physics, quantum mechanics, including the theory ...
.
Quantization of matter
In 1924 Louis de Broglie
Louis Victor Pierre Raymond, 7th Duc de Broglie (15 August 1892 – 19 March 1987) was a French theoretical physicist and aristocrat known for his contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of elec ...
proposed that electrons in an atom are constrained not in "orbits" but as standing waves. In detail his solution did not work, but his hypothesis – that the electron "corpuscle" moves in the atom as a wave – spurred Erwin Schrödinger
Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
to develop a wave equation
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light ...
for electrons; when applied to hydrogen the Rydberg formula was accurately reproduced.[
]
Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
's 1924 paper ''"Zur Quantenmechanik"'' was the first use of the words "quantum mechanics" in print. His later work included developing quantum collision models; in a footnote to a 1926 paper he proposed the Born rule
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a ...
connecting theoretical models to experiment.[
Reprinted as
]
In 1927 at Bell Labs, Clinton Davisson
Clinton Joseph Davisson (October 22, 1881 – February 1, 1958) was an American physicist who shared the 1937 Nobel Prize in Physics with George Paget Thomson "for their experimental discovery of the diffraction of electrons by crystals".
Earl ...
and Lester Germer
Lester Halbert Germer (October 10, 1896 – October 3, 1971) was an American physicist. With Clinton Davisson, he proved the wave-particle duality of matter in the Davisson–Germer experiment, which was important to the development of the e ...
fired slow-moving electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s at a crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
target which showed a diffraction pattern indicating wave nature of electron whose theory was fully explained by Hans Bethe
Hans Albrecht Eduard Bethe (; ; July 2, 1906 – March 6, 2005) was a German-American physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics and solid-state physics, and received the Nobel Prize in Physi ...
. A similar experiment by George Paget Thomson and Alexander Reid, firing electrons at thin celluloid foils and later metal films, observing rings, independently discovered matter wave
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffract ...
nature of electrons.
Further developments
In 1928 Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
published his relativistic wave equation simultaneously incorporating relativity, predicting anti-matter, and providing a complete theory for the Stern–Gerlach result.[ These successes launched a new fundamental understanding of our world at small scale: '']quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
.''
Planck and Einstein started the revolution with quanta that broke down the continuous models of matter and light. Twenty years later "corpuscles" like electrons came to be modeled as continuous waves. This result came to be called wave-particle duality, one iconic idea along with the uncertainty principle that sets quantum mechanics apart from older models of physics.
Quantum radiation, quantum fields
In 1923 Compton demonstrated that the Planck-Einstein energy quanta from light also had momentum; three years later the "energy quanta" got a new name "photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
"[.] Despite its role in almost all stages of the quantum revolution, no explicit model for light quanta existed until 1927 when Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
began work on a quantum theory of radiation that became quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. Over the following decades this work evolved into quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, the basis for modern quantum optics
Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry that studies the behavior of photons (individual quanta of light). It includes the study of the particle-like properties of photons and their interaction ...
and particle physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
.
Wave–particle duality
The concept of wave–particle duality says that neither the classical concept of "particle" nor of "wave" can fully describe the behavior of quantum-scale objects, either photons or matter. Wave–particle duality is an example of the principle of complementarity in quantum physics.[
][
][
][
] An elegant example of wave-particle duality is the double-slit experiment.
In the double-slit experiment, as originally performed by Thomas Young in 1803, and then Augustin Fresnel a decade later, a beam of light is directed through two narrow, closely spaced slits, producing an interference pattern of light and dark bands on a screen. The same behavior can be demonstrated in water waves: the double-slit experiment was seen as a demonstration of the wave nature of light.
Variations of the double-slit experiment have been performed using electrons, atoms, and even large molecules, and the same type of interference pattern is seen. Thus it has been demonstrated that all matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
possesses wave characteristics.
If the source intensity is turned down, the same interference pattern will slowly build up, one "count" or particle (e.g. photon or electron) at a time. The quantum system acts as a wave when passing through the double slits, but as a particle when it is detected. This is a typical feature of quantum complementarity: a quantum system acts as a wave in an experiment to measure its wave-like properties, and like a particle in an experiment to measure its particle-like properties. The point on the detector screen where any individual particle shows up is the result of a random process. However, the distribution pattern of many individual particles mimics the diffraction pattern produced by waves.
Uncertainty principle
Suppose it is desired to measure the position and speed of an object—for example, a car going through a radar speed trap. It can be assumed that the car has a definite position and speed at a particular moment in time. How accurately these values can be measured depends on the quality of the measuring equipment. If the precision of the measuring equipment is improved, it provides a result closer to the true value. It might be assumed that the speed of the car and its position could be operationally defined and measured simultaneously, as precisely as might be desired.
In 1927, Heisenberg proved that this last assumption is not correct. Quantum mechanics shows that certain pairs of physical properties, for example, position and speed, cannot be simultaneously measured, nor defined in operational terms, to arbitrary precision: the more precisely one property is measured, or defined in operational terms, the less precisely can the other be thus treated. This statement is known as the uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
. The uncertainty principle is not only a statement about the accuracy of our measuring equipment but, more deeply, is about the conceptual nature of the measured quantities—the assumption that the car had simultaneously defined position and speed does not work in quantum mechanics. On a scale of cars and people, these uncertainties are negligible, but when dealing with atoms and electrons they become critical.
Heisenberg gave, as an illustration, the measurement of the position and momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
of an electron using a photon of light. In measuring the electron's position, the higher the frequency of the photon, the more accurate is the measurement of the position of the impact of the photon with the electron, but the greater is the disturbance of the electron. This is because from the impact with the photon, the electron absorbs a random amount of energy, rendering the measurement obtained of its momentum increasingly uncertain, for one is necessarily measuring its post-impact disturbed momentum from the collision products and not its original momentum (momentum which should be simultaneously measured with position). With a photon of lower frequency, the disturbance (and hence uncertainty) in the momentum is less, but so is the accuracy of the measurement of the position of the impact.["Uncertainty principle", ''Encyclopædia Britannica''](_blank)
/ref>
At the heart of the uncertainty principle is a fact that for any mathematical analysis in the position and velocity domains, achieving a sharper (more precise) curve in the position domain can only be done at the expense of a more gradual (less precise) curve in the speed domain, and vice versa. More sharpness in the position domain requires contributions from more frequencies in the speed domain to create the narrower curve, and vice versa. It is a fundamental tradeoff inherent in any such related or complementary measurements, but is only really noticeable at the smallest (Planck) scale, near the size of elementary particles
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
.
The uncertainty principle shows mathematically that the product of the uncertainty in the position and momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
of a particle (momentum is velocity multiplied by mass) could never be less than a certain value, and that this value is related to the Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
.
Wave function collapse
''Wave function collapse'' means that a measurement has forced or converted a quantum (probabilistic or potential) state into a definite measured value. This phenomenon is only seen in quantum mechanics rather than classical mechanics.
For example, before a photon actually "shows up" on a detection screen it can be described only with a set of probabilities for where it might show up. When it does appear, for instance in the CCD of an electronic camera, the time and space where it interacted with the device are known within very tight limits. However, the photon has disappeared in the process of being captured (measured), and its quantum wave function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
has disappeared with it. In its place, some macroscopic physical change in the detection screen has appeared, e.g., an exposed spot in a sheet of photographic film, or a change in electric potential in some cell of a CCD.
Eigenstates and eigenvalues
Because of the uncertainty principle, statements about both the position and momentum of particles can assign only a probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
that the position or momentum has some numerical value. Therefore, it is necessary to formulate clearly the difference between the state of something indeterminate, such as an electron in a probability cloud, and the state of something having a definite value. When an object can definitely be "pinned-down" in some respect, it is said to possess an eigenstate
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system re ...
.
In the Stern–Gerlach experiment discussed above, the quantum model predicts two possible values of spin for the atom compared to the magnetic axis. These two eigenstates are named arbitrarily 'up' and 'down'. The quantum model predicts these states will be measured with equal probability, but no intermediate values will be seen. This is what the Stern–Gerlach experiment shows.
The eigenstates of spin about the vertical axis are not simultaneously eigenstates of spin about the horizontal axis, so this atom has an equal probability of being found to have either value of spin about the horizontal axis. As described in the section above, measuring the spin about the horizontal axis can allow an atom that was spun up to spin down: measuring its spin about the horizontal axis collapses its wave function into one of the eigenstates of this measurement, which means it is no longer in an eigenstate of spin about the vertical axis, so can take either value.
The Pauli exclusion principle
In 1924, Wolfgang Pauli
Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
proposed a new quantum degree of freedom (or quantum number
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system.
To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantu ...
), with two possible values, to resolve inconsistencies between observed molecular spectra and the predictions of quantum mechanics. In particular, the spectrum of atomic hydrogen had a doublet, or pair of lines differing by a small amount, where only one line was expected. Pauli formulated his ''exclusion principle'', stating, "There cannot exist an atom in such a quantum state that two electrons within thave the same set of quantum numbers."
A year later, Uhlenbeck and Goudsmit identified Pauli's new degree of freedom with the property called spin whose effects were observed in the Stern–Gerlach experiment.
Dirac wave equation
In 1928, Paul Dirac extended the Pauli equation
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic f ...
, which described spinning electrons, to account for special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
. The result was a theory that dealt properly with events, such as the speed at which an electron orbits the nucleus, occurring at a substantial fraction of the speed of light
The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. By using the simplest electromagnetic interaction, Dirac was able to predict the value of the magnetic moment associated with the electron's spin and found the experimentally observed value, which was too large to be that of a spinning charged sphere governed by classical physics
Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
. He was able to solve for the spectral lines of the hydrogen atom and to reproduce from physical first principles Sommerfeld's successful formula for the fine structure
In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom ...
of the hydrogen spectrum.
Dirac's equations sometimes yielded a negative value for energy, for which he proposed a novel solution: he posited the existence of an antielectron and a dynamical vacuum. This led to the many-particle quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
.
Quantum entanglement
In quantum physics, a group of particle
In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass.
They vary greatly in size or quantity, from s ...
s can interact or be created together in such a way that the quantum state
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. This is known as quantum entanglement
Quantum entanglement is the phenomenon where the quantum state of each Subatomic particle, particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance. The topic o ...
.
An early landmark in the study of entanglement was the Einstein–Podolsky–Rosen (EPR) paradox, a thought experiment
A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is ...
proposed by Albert Einstein, Boris Podolsky and Nathan Rosen
Nathan Rosen (; March 22, 1909 – December 18, 1995) was an American and Israeli physicist noted for his study on the structure of the hydrogen molecule and his collaboration with Albert Einstein and Boris Podolsky on entangled wave functions and ...
which argues that the description of physical reality provided by quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
is incomplete. In a 1935 paper titled "Can Quantum-Mechanical Description of Physical Reality be Considered Complete?", they argued for the existence of "elements of reality" that were not part of quantum theory, and speculated that it should be possible to construct a theory containing these hidden variables.
The thought experiment involves a pair of particles prepared in what would later become known as an entangled state. Einstein, Podolsky, and Rosen pointed out that, in this state, if the position of the first particle were measured, the result of measuring the position of the second particle could be predicted. If instead the momentum of the first particle were measured, then the result of measuring the momentum of the second particle could be predicted. They argued that no action taken on the first particle could instantaneously affect the other, since this would involve information being transmitted faster than light, which is forbidden by the theory of relativity
The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical ph ...
. They invoked a principle, later known as the "EPR criterion of reality", positing that: "If, without in any way disturbing a system, we can predict with certainty (i.e., with probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
equal to unity) the value of a physical quantity, then there exists an element of reality corresponding to that quantity." From this, they inferred that the second particle must have a definite value of both position and of momentum prior to either quantity being measured. But quantum mechanics considers these two observables incompatible and thus does not associate simultaneous values for both to any system. Einstein, Podolsky, and Rosen therefore concluded that quantum theory does not provide a complete description of reality. In the same year, Erwin Schrödinger
Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
used the word "entanglement" and declared: "I would not call that ''one'' but rather ''the'' characteristic trait of quantum mechanics."
The Irish physicist John Stewart Bell
John Stewart Bell (28 July 1928 – 1 October 1990) was a physicist from Northern Ireland and the originator of Bell's theorem, an important theorem in quantum mechanics, quantum physics regarding hidden-variable theory, hidden-variable theor ...
carried the analysis of quantum entanglement much further. He deduced that if measurements are performed independently on the two separated particles of an entangled pair, then the assumption that the outcomes depend upon hidden variables within each half implies a mathematical constraint on how the outcomes on the two measurements are correlated. This constraint would later be named the Bell inequality. Bell then showed that quantum physics predicts correlations that violate this inequality. Consequently, the only way that hidden variables could explain the predictions of quantum physics is if they are "nonlocal", which is to say that somehow the two particles are able to interact instantaneously no matter how widely they ever become separated. Performing experiments like those that Bell suggested, physicists have found that nature obeys quantum mechanics and violates Bell inequalities. In other words, the results of these experiments are incompatible with any local hidden variable theory.
Quantum field theory
The idea of quantum field theory began in the late 1920s with British physicist Paul Dirac, when he attempted to quantize the energy of the electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
; just as in quantum mechanics the energy of an electron in the hydrogen atom was quantized. Quantization is a procedure for constructing a quantum theory starting from a classical theory.
''Merriam-Webster
Merriam-Webster, Incorporated is an list of companies of the United States by state, American company that publishes reference work, reference books and is mostly known for Webster's Dictionary, its dictionaries. It is the oldest dictionary pub ...
'' defines a ''field'' in physics as "a region or space in which a given effect (such as magnetism
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, ...
) exists". Other effects that manifest themselves as fields are gravitation
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
and static electricity
Static electricity is an imbalance of electric charges within or on the surface of a material. The charge remains until it can move away by an electric current or electrical discharge. The word "static" is used to differentiate it from electric ...
.["Field"](_blank)
''Encyclopædia Britannica'' In 2008, physicist Richard Hammond wrote:
Sometimes we distinguish between quantum mechanics (QM) and quantum field theory (QFT). QM refers to a system in which the number of particles is fixed, and the fields (such as the electromechanical field) are continuous classical entities. QFT ... goes a step further and allows for the creation and annihilation of particles ...
He added, however, that ''quantum mechanics'' is often used to refer to "the entire notion of quantum view".[Richard Hammond, ''The Unknown Universe'', New Page Books, 2008. ]
In 1931, Dirac proposed the existence of particles that later became known as antimatter
In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding subatomic particle, particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or go ...
. Dirac shared the Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
for 1933 with Schrödinger "for the discovery of new productive forms of atomic theory".
Quantum electrodynamics
Quantum electrodynamics (QED) is the name of the quantum theory of the electromagnetic force
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interac ...
. Understanding QED begins with understanding electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
. Electromagnetism can be called "electrodynamics" because it is a dynamic interaction between electrical and magnetic force
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
s. Electromagnetism begins with the electric charge
Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
.
Electric charges are the sources of and create, electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s. An electric field is a field that exerts a force on any particles that carry electric charges, at any point in space. This includes the electron, proton, and even quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s, among others. As a force is exerted, electric charges move, a current flows, and a magnetic field is produced. The changing magnetic field, in turn, causes electric current
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
(often moving electrons). The physical description of interacting charged particle
In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom ...
s, electrical currents, electrical fields, and magnetic fields is called electromagnetism.
In 1928 Paul Dirac produced a relativistic quantum theory of electromagnetism. This was the progenitor to modern quantum electrodynamics, in that it had essential ingredients of the modern theory. However, the problem of unsolvable infinities developed in this relativistic quantum theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
. Years later, renormalization
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of the ...
largely solved this problem. Initially viewed as a provisional, suspect procedure by some of its originators, renormalization eventually was embraced as an important and self-consistent tool in QED and other fields of physics. Also, in the late 1940s Feynman diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
s provided a way to make predictions with QED by finding a probability amplitude for each possible way that an interaction could occur. The diagrams showed in particular that the electromagnetic force is the exchange of photons between interacting particles.
The Lamb shift
In physics, the Lamb shift, named after Willis Lamb, is an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which pre ...
is an example of a quantum electrodynamics prediction that has been experimentally verified. It is an effect whereby the quantum nature of the electromagnetic field makes the energy levels in an atom or ion deviate slightly from what they would otherwise be. As a result, spectral lines may shift or split.
Similarly, within a freely propagating electromagnetic wave, the current can also be just an abstract displacement current
In electromagnetism, displacement current density is the quantity appearing in Maxwell's equations that is defined in terms of the rate of change of , the electric displacement field. Displacement current density has the same units as electric ...
, instead of involving charge carriers. In QED, its full description makes essential use of short-lived virtual particles
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
. There, QED again validates an earlier, rather mysterious concept.
Standard Model
The Standard Model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of particle physics is the quantum field theory that describes three of the four known fundamental force
In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist:
* gravity
* electromagnetism
* weak int ...
s (electromagnetic
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, weak
Weak may refer to:
Songs
* Weak (AJR song), "Weak" (AJR song), 2016
* Weak (Melanie C song), "Weak" (Melanie C song), 2011
* Weak (SWV song), "Weak" (SWV song), 1993
* Weak (Skunk Anansie song), "Weak" (Skunk Anansie song), 1995
* "Weak", a son ...
and strong interaction
In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interaction, fundamental interactions. It confines Quark, quarks into proton, protons, n ...
s – excluding gravity
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
) in the universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
and classifies all known elementary particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s. Since then, proof of the top quark
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs field. This coupling is very close to unity; in the Standard ...
(1995), the tau neutrino
The tau neutrino or tauon neutrino is an elementary particle which has the symbol and zero electric charge. Together with the tau (particle), tau (), it forms the third generation (physics), generation of leptons, hence the name tau neutrino. It ...
(2000), and the Higgs boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field,
one of the field (physics), fields in particl ...
(2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
with great accuracy.
Although the Standard Model is believed to be theoretically self-consistent and has demonstrated success in providing experimental predictions, it leaves some physical phenomena unexplained and so falls short of being a complete theory of fundamental interactions. For example, it does not fully explain baryon asymmetry
In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and an ...
, incorporate the full theory of gravitation
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force be ...
as described by general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, or account for the universe's accelerating expansion as possibly described by dark energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
. The model does not contain any viable dark matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
particle that possesses all of the required properties deduced from observational cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
. It also does not incorporate neutrino oscillation
Neutrino oscillation is a quantum mechanics, quantum mechanical phenomenon in which a neutrino created with a specific lepton lepton number, family number ("lepton flavor": electron, muon, or tau lepton, tau) can later be Quantum measurement, mea ...
s and their non-zero masses. Accordingly, it is used as a basis for building more exotic models that incorporate hypothetical particle
This is a list of known and hypothesized microscopic particles in particle physics, condensed matter physics and cosmology.
Standard Model elementary particles
Elementary particles are particles with no measurable internal structure; that is, ...
s, extra dimensions
In physics, extra dimensions or extra-dimensional spaces are proposed as additional space or time dimensions beyond the (3 + 1) typical of observed spacetime — meaning 5-dimensional or higher. such as the first attempts based on the K ...
, and elaborate symmetries (such as supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
) to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations.
Interpretations
The physical measurements, equations, and predictions pertinent to quantum mechanics are all consistent and hold a very high level of confirmation. However, the question of what these abstract models say about the underlying nature of the real world has received competing answers. These interpretations are widely varying and sometimes somewhat abstract. For instance, the Copenhagen interpretation
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretat ...
states that before a measurement, statements about a particle's properties are completely meaningless, while the many-worlds interpretation
The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is Philosophical realism, objectively real, and that there is no wave function collapse. This implies that all Possible ...
describes the existence of a multiverse
The multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describ ...
made up of every possible universe.
Light behaves in some aspects like particles and in other aspects like waves. Matter—the "stuff" of the universe consisting of particles such as electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s—exhibits wavelike behavior too. Some light sources, such as neon lights, give off only certain specific frequencies of light, a small set of distinct pure colors determined by neon's atomic structure. Quantum mechanics shows that light, along with all other forms of electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, comes in discrete units, called photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, and predicts its spectral energies (corresponding to pure colors), and the intensities of its light beams. A single photon is a ''quantum
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
'', or smallest observable particle, of the electromagnetic field. A partial photon is never experimentally observed. More broadly, quantum mechanics shows that many properties of objects, such as position, speed, and angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
, that appeared continuous in the zoomed-out view of classical mechanics, turn out to be (in the very tiny, zoomed-in scale of quantum mechanics) '' quantized''. Such properties of elementary particles
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
are required to take on one of a set of small, discrete allowable values, and since the gap between these values is also small, the discontinuities are only apparent at very tiny (atomic) scales.
Applications
Everyday applications
The relationship between the frequency of electromagnetic radiation and the energy of each photon is why ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light can cause sunburn
Sunburn is a form of radiation burn that affects living tissue, such as skin, that results from an overexposure to ultraviolet (UV) radiation, usually from the Sun. Common symptoms in humans and other animals include red or reddish skin tha ...
, but visible or infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light cannot. A photon of ultraviolet light delivers a high amount of energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
—enough to contribute to cellular damage such as occurs in a sunburn. A photon of infrared light delivers less energy—only enough to warm one's skin. So, an infrared lamp can warm a large surface, perhaps large enough to keep people comfortable in a cold room, but it cannot give anyone a sunburn.
Technological applications
Applications of quantum mechanics include the laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
, the transistor
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
, the electron microscope
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. It uses electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing it ...
, and magnetic resonance imaging
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and ...
. A special class of quantum mechanical applications is related to macroscopic quantum phenomena
Macroscopic quantum phenomena are processes showing Quantum mechanics, quantum behavior at the macroscopic scale, rather than at the Atom, atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena ar ...
such as superfluid helium and superconductors. The study of semiconductors led to the invention of the diode
A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
and the transistor
A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
, which are indispensable for modern electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
.
In even a simple light switch
In electrical wiring, a light switch is a switch most commonly used to operate electric lights, permanently connected equipment, or AC power plugs and sockets, electrical outlets. Portable lamps such as table lamps may have a light switch mounte ...
, quantum tunneling
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
is absolutely vital, as otherwise the electrons in the electric current
An electric current is a flow of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is defined as the net rate of flow of electric charge through a surface. The moving particles are called charge c ...
could not penetrate the potential barrier made up of a layer of oxide. Flash memory
Flash memory is an Integrated circuit, electronic Non-volatile memory, non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for t ...
chips found in USB drives also use quantum tunneling, to erase their memory cells.[
]
See also
* Einstein's thought experiments
* Macroscopic quantum phenomena
Macroscopic quantum phenomena are processes showing Quantum mechanics, quantum behavior at the macroscopic scale, rather than at the Atom, atomic scale where quantum effects are prevalent. The best-known examples of macroscopic quantum phenomena ar ...
* Philosophy of physics
In philosophy, the philosophy of physics deals with conceptual and interpretational issues in physics, many of which overlap with research done by certain kinds of theoretical physicists. Historically, philosophers of physics have engaged with ...
* Quantum computing
A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s ...
* Virtual particle
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
* Teaching quantum mechanics
* List of textbooks on classical and quantum mechanics
References
Bibliography
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ''Scientific American Reader'', 1953.
*
* ; cited in:
*
* Van Vleck, J. H.,1928, "The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics", ''Proc. Natl. Acad. Sci.'' 14: 179.
*
*
*
Further reading
The following titles, all by working physicists, attempt to communicate quantum theory to laypeople, using a minimum of technical apparatus.
* Jim Al-Khalili
Jameel Sadik "Jim" Al-Khalili (; born 20 September 1962) is an Iraqi-British theoretical physicist and science populariser. He is professor of theoretical physics and chair in the public engagement in science at the University of Surrey. He is a ...
(2003). ''Quantum: A Guide for the Perplexed''. Weidenfeld & Nicolson. .
* Chester, Marvin (1987). ''Primer of Quantum Mechanics''. John Wiley. .
* Brian Cox and Jeff Forshaw (2011) '' The Quantum Universe''. Allen Lane. .
* Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
(1985). '' QED: The Strange Theory of Light and Matter''. Princeton University Press. .
* Ford, Kenneth (2005). ''The Quantum World''. Harvard Univ. Press. Includes elementary particle physics.
* Ghirardi, GianCarlo (2004). ''Sneaking a Look at God's Cards'', Gerald Malsbary, trans. Princeton Univ. Press. The most technical of the works cited here. Passages using algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, trigonometry
Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The fiel ...
, and bra–ket notation
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically de ...
can be passed over on a first reading.
* Tony Hey and Walters, Patrick (2003). ''The New Quantum Universe''. Cambridge Univ. Press. Includes much about the technologies quantum theory has made possible. .
* Vladimir G. Ivancevic, Tijana T. Ivancevic (2008). ''Quantum leap: from Dirac and Feynman, Across the universe, to human body and mind''. World Scientific Publishing Company. Provides an intuitive introduction in non-mathematical terms and an introduction in comparatively basic mathematical terms. .
* J. P. McEvoy and Oscar Zarate (2004). ''Introducing Quantum Theory''. Totem Books. '
* N. David Mermin (1990). "Spooky actions at a distance: mysteries of the QT" in his ''Boojums all the way through''. Cambridge Univ. Press: 110–76. The author is a rare physicist who tries to communicate to philosophers and humanists. .
* Roland Omnès (1999). ''Understanding Quantum Mechanics''. Princeton Univ. Press. .
* Victor Stenger (2000). ''Timeless Reality: Symmetry, Simplicity, and Multiple Universes''. Buffalo NY: Prometheus Books. Chpts. 5–8. .
* Martinus Veltman
Martinus Justinus Godefriedus "Tini" Veltman (; 27 June 1931 – 4 January 2021) was a Dutch theoretical physicist. He shared the 1999 Nobel Prize in Physics with his former PhD student Gerardus 't Hooft for their work on particle theory.
Bio ...
(2003). ''Facts and Mysteries in Elementary Particle Physics''. World Scientific Publishing Company. .
External links
*
Microscopic World – Introduction to Quantum Mechanics".
by Takada, Kenjiro, emeritus professor at Kyushu University
, abbreviated to , is a public research university located in Fukuoka, Japan, on the island of Kyushu. Founded in 1911 as the fourth Imperial University in Japan, it has been recognised as a leading institution of higher education and resear ...
The Quantum Exchange
(tutorials and open-source learning software).
Atoms and the Periodic Table
Single and double slit interference
Time-Evolution of a Wavepacket in a Square Well
An animated demonstration of a wave packet dispersion over time.
*
{{DEFAULTSORT:Quantum mechanics, Introduction to
Articles containing video clips