HOME



picture info

Plum Pudding Model
The plum pudding model is an obsolete scientific model of the atom. It was first proposed by J. J. Thomson in 1904 following his discovery of the electron in 1897, and was rendered obsolete by Ernest Rutherford's discovery of the atomic nucleus in 1911. The model tried to account for two properties of atoms then known: that there are electrons, and that atoms have no net electric charge. Logically there had to be an equal amount of positive charge to balance out the negative charge of the electrons. As Thomson had no idea as to the source of this positive charge, he tentatively proposed that it was everywhere in the atom, and that the atom was spherical. This was the mathematically simplest hypothesis to fit the available evidence, or lack thereof. In such a sphere, the negatively charged electrons would distribute themselves in a more or less even manner throughout the volume, simultaneously repelling each other while being attracted to the positive sphere's center. Despite Thoms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rutherford Scattering Experiments
The Rutherford scattering experiments were a landmark series of experiments by which scientists learned that every atom has a Atomic nucleus, nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattering, scattered when it strikes a thin Foil (metal), metal foil. The experiments were performed between 1906 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester. The physical phenomenon was explained by Rutherford in a classic 1911 paper that eventually led to the widespread use of scattering in particle physics to study subatomic matter. Rutherford scattering or Coulomb scattering is the elastic scattering of charged particles by the Coulomb interaction. The paper also initiated the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering is now ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thomson Atom Seven Electrons
Thomson may refer to: Names * Thomson (surname), a list of people with this name and a description of its origin * Thomson baronets, four baronetcies created for persons with the surname Thomson Businesses and organizations * SGS-Thomson Microelectronics, an electronics manufacturer * Various travel subsidiaries of TUI Group: ** Thomson Airways (now TUI Airways), a UK-based airline ** Thomson Cruises (now Marella Cruises), a UK-based cruise line ** Thomson Travel (now TUI UK), a UK-based travel company ** Thomsonfly, a former UK airline, formerly Britannia Airways * Thomson Directories, local business search company and publisher of: ** Thomson Local, the UK business directory * Thomson Multimedia, former name of Technicolor SA, a French multinational corporation * Thomson Reuters, Canadian media and information services company ** Thomson Corporation, former name of the company prior to its 2008 merger with Reuters ** Thomson Financial, former business division of Tho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Johnstone Stoney
George Johnstone Stoney (15 February 1826 – 5 July 1911) was an Irish physicist known for introducing the term ''electron'' as the "fundamental unit quantity of electricity". He initially named it ''electrolion'' in 1881, and later named it ''electron'' in 1891. He published around 75 scientific papers during his lifetime. Education and employment Stoney was born at Oakley Park, near Birr, County Offaly, in the Irish Midlands, the son of George Stoney (1792–) and Anne Blood (1801–1883). The Stoney family is an old-established Anglo-Irish family. He attended Trinity College Dublin, graduating with a B.A. degree in 1848. From 1848 to 1852 he worked as an astronomy assistant to William Parsons, 3rd Earl of Rosse at Birr Castle, County Offaly, where Parsons had built the world's largest telescope, the 72-inch Leviathan of Parsonstown. Simultaneously Stoney continued to study physics and mathematics and was awarded an M.A. by Trinity College Dublin in 1852. From 185 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isotopes
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have similar chemical properties, they have different atomic masses and physical properties. The term isotope is derived from the Greek roots isos ( ἴσος "equal") and topos ( τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term. The number of protons within the atom's nucleus is called its atomic number and is equal to the number of el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidizing agent, oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Electronegativity#Pauling electronegativity, Pauling scale, behind only oxygen and fluorine. Chlorine played an important role in the experiments conducted by medieval Alchemy, alchemists, which commonly involved the heating of chloride Salt (chemistry), salts like ammonium chloride (sal ammoniac) and sodium chloride (common salt), producing various chemical substances containing chlorine such as hydrogen chloride, mercury(II) chloride (corrosive sublimate), and . However, the nature of fre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

William Prout
William Prout Fellow of the Royal Society, FRS (; 15 January 1785 – 9 April 1850) was an English chemist, physician, and natural theologian. He is remembered today mainly for what is called Prout's hypothesis. Biography Prout was born in Horton, Gloucestershire in 1785 and educated at 17 years of age by a clergyman, followed by the Redland Academy at Bristol and Edinburgh University, where he graduated in 1811 with an MD. His professional life was spent as a practising physician in London, but he also occupied himself with chemical research. He was an active worker in biological chemistry and carried out many analyses of the secretions of living organisms, which he believed were produced by the breakdown of bodily tissues. In 1823, he discovered that stomach juices contain hydrochloric acid, which can be separated from gastric juice by distillation. In 1827, he proposed the classification of substances in food into sugars and starches, oily bodies, and albumen, which woul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Line
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules. These "fingerprints" can be compared to the previously collected ones of atoms and molecules, and are thus used to identify the atomic and molecular components of stars and planets, which would otherwise be impossible. Types of line spectra Spectral lines are the result of interaction between a Quantum mechanics, quantum system (usually atoms, but sometimes molecules or atomic nucleus, atomic nuclei) and a single photon. When a photon has about the right amount of photon energy, energy (which is connected to its frequency) to allow a change in the energy state of the system (in the case of an atom this is usually an electron cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research. Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid. He conceived the principle of Complementarity (physics), complementarity: that items could be separately analysed in terms of contradictory properties, like behaving as a Wave–particle duality, wave or a stream of particles. The notion of complementarity dominated Bohr's thinking in both science and philoso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atomic Spectra
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and electronic structure of matter to be investigated at the atomic, molecular and macro scale, and over astronomical distances. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. Current applications of spectroscopy include biomedical spectroscopy in the areas of tissue analysis and medical imaging. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Particles
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced in different ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 2+ indicating a helium ion with a +2 charge (missing its two electrons). Once the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom . Alpha particles have a net spin of zero. When produced in standard alpha radioactive decay, alpha particles generally have a kinetic energy of about 5  MeV and a velocity in the vicinity of 4% of the speed of light. They are a highly ionizing form of particle radiation, with low penetration depth (stopped by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beta Decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in what is called ''positron emission''. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energeticall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henri Becquerel
Antoine Henri Becquerel ( ; ; 15 December 1852 – 25 August 1908) was a French nuclear physicist who shared the 1903 Nobel Prize in Physics with Marie and Pierre Curie for his discovery of radioactivity. Biography Family and education Becquerel was born in Paris, France, into a wealthy family which produced four generations of notable physicists, including Becquerel's grandfather ( Antoine César Becquerel), father ( Edmond Becquerel), and son ( Jean Becquerel). Henri started off his education by attending the Lycée Louis-le-Grand school, a prep school in Paris. He studied engineering at the École polytechnique and the École des ponts et chaussées. Career Becquerel's earliest works centered on the subject of his doctoral thesis: the plane polarization of light, with the phenomenon of phosphorescence and absorption of light by crystals. Becquerel was awarded a Doctor of Science in 1888. Early in his career, Becquerel also studied the Earth's magnetic field. Becqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]