Induced Fission
   HOME

TheInfoList



OR:

Nuclear fission is a
reaction Reaction may refer to a process or to a response to an action, event, or exposure. Physics and chemistry *Chemical reaction *Nuclear reaction *Reaction (physics), as defined by Newton's third law * Chain reaction (disambiguation) Biology and ...
in which the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
of an
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
splits into two or more smaller nuclei. The fission process often produces
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, and releases a very large amount of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
even by the energetic standards of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Nuclear fission was discovered by chemists
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
and
Fritz Strassmann Friedrich Wilhelm Strassmann (; 22 February 1902 – 22 April 1980) was a German chemist who, with Otto Hahn in December 1938, identified the element barium as a product of the bombardment of uranium with neutrons. Their observation was the key ...
and physicists
Lise Meitner Elise Lise Meitner ( ; ; 7 November 1878 – 27 October 1968) was an Austrian-Swedish nuclear physicist who was instrumental in the discovery of nuclear fission. After completing her doctoral research in 1906, Meitner became the second woman ...
and
Otto Robert Frisch Otto Robert Frisch (1 October 1904 – 22 September 1979) was an Austrian-born British physicist who worked on nuclear physics. With Otto Stern and Immanuel Estermann, he first measured the magnetic moment of the proton. With his aunt, Lise M ...
. Hahn and Strassmann proved that a fission reaction had taken place on 19 December 1938, and Meitner and her nephew Frisch explained it theoretically in January 1939. Frisch named the process "fission" by analogy with biological fission of living cells. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s during the fission process, opening up the possibility of a
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
. For heavy
nuclide Nuclides (or nucleides, from nucleus, also known as nuclear species) are a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by the A ...
s, it is an
exothermic reaction In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change Δ''H''⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC define ...
which can release large amounts of energy both as
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
and as
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
of the fragments (
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
ing the bulk material where fission takes place). Like
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
, for fission to produce energy, the total
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of the resulting elements must be greater than that of the starting element. The
fission barrier In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the ...
must also be overcome. Fissionable nuclides primarily split in interactions with
fast neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
, while
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
nuclides easily split in interactions with "slow" i.e.
thermal neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
, usually originating from
moderation Moderation is the process or trait of eliminating, lessening, or avoiding extremes. It is used to ensure normality throughout the medium on which it is being conducted. Common uses of moderation include: * A way of life emphasizing perfect amo ...
of fast neutrons. Fission is a form of
nuclear transmutation Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutat ...
because the resulting fragments (or daughter atoms) are not the same
element Element or elements may refer to: Science * Chemical element, a pure substance of one type of atom * Heating element, a device that generates heat by electrical resistance * Orbital elements, parameters required to identify a specific orbit of o ...
as the original parent atom. The two (or more) nuclei produced are most often of comparable but slightly different sizes, typically with a mass ratio of products of about 3 to 2, for common fissile
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s. Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), ''three'' positively charged fragments are produced, in a
ternary fission Ternary fission is a comparatively rare (0.2 to 0.4% of events) type of nuclear fission in which three charged products are produced rather than two. As in other nuclear fission processes, other uncharged particles such as multiple neutrons and ...
. The smallest of these fragments in ternary processes ranges in size from a proton to an
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
nucleus. Apart from fission induced by an exogenous neutron, harnessed and exploited by humans, a natural form of spontaneous radioactive decay (not requiring an exogenous neutron, because the nucleus already has an overabundance of neutrons) is also referred to as fission, and occurs especially in very high-mass-number isotopes.
Spontaneous fission Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
was discovered in 1940 by Flyorov, Petrzhak, and Kurchatov in Moscow. In contrast to
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
, which drives the formation of stars and their development, one can consider nuclear fission as negligible for the evolution of the universe. Nonetheless, natural nuclear fission reactors may form under very rare conditions. Accordingly, all elements (with a few exceptions, see "spontaneous fission") which are important for the formation of solar systems, planets and also for all forms of life are not fission products, but rather the results of fusion processes. The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely
quantum tunneling In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
processes such as
proton emission Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a atomic nucleus, nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay ...
,
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
, and
cluster decay Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay," is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, ...
, which give the same products each time. Nuclear fission produces energy for
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
and drives the explosion of
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s. Both uses are possible because certain substances called
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
s undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes a self-sustaining
nuclear chain reaction In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
possible, releasing energy at a controlled rate in a
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
or at a very rapid, uncontrolled rate in a nuclear weapon. The amount of free energy released in the fission of an equivalent amount of is a million times more than that released in the combustion of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
or from
hydrogen fuel cells A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
. The products of nuclear fission, however, are on average far more
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
than the heavy elements which are normally fissioned as fuel, and remain so for significant amounts of time, giving rise to a
nuclear waste Radioactive waste is a type of hazardous waste that contains radioactive material. It is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear ...
problem. However, the seven
long-lived fission product Long-lived fission products (LLFPs) are radioactive materials with a long half-life (more than 200,000 years) produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from hum ...
s make up only a small fraction of fission products.
Neutron absorption Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
which does not lead to fission produces
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
(from ) and
minor actinide Minor may refer to: Common meanings * Minor (law), a person not under the age of certain legal activities. * Academic minor, a secondary field of study in undergraduate education Mathematics * Minor (graph theory), a relation of one graph to ...
s (from both and ) whose radiotoxicity is far higher than that of the long lived fission products. Concerns over nuclear waste accumulation and the destructive potential of nuclear weapons are a counterbalance to the peaceful desire to use fission as an energy source. The
thorium fuel cycle The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, , as the fertile material. In the reactor, is transmuted into the fissile artificial uranium isotope which is the nuclear fuel. Unlike natural uranium, natural ...
produces virtually no plutonium and much less minor actinides, but - or rather its decay products - are a major gamma ray emitter. All actinides are
fertile Fertility in colloquial terms refers the ability to have offspring. In demographic contexts, fertility refers to the actual production of offspring, rather than the physical capability to reproduce, which is termed fecundity. The fertility rate is ...
or
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
and
fast breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be Nuclear fuel, fueled with more-commonly available isotopes of uranium and Isotopes of thorium, thorium, such as uranium-238 and t ...
s can fission them all albeit only in certain configurations.
Nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the ...
aims to recover usable material from
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
to both enable uranium (and thorium) supplies to last longer and to reduce the amount of "waste". The industry term for a process that fissions all or nearly all actinides is a " closed fuel cycle".


Physical overview


Mechanism

Younes and Loveland define fission as, "...a collective motion of the protons and neutrons that make up the nucleus, and as such it is distinguishable from other phenomena that break up the nucleus. Nuclear fission is an extreme example of large-
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
collective motion that results in the division of a parent nucleus into two or more fragment nuclei. The fission process can occur spontaneously, or it can be induced by an incident particle." The energy from a fission reaction is produced by its
fission products Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
, though a large majority of it, about 85 percent, is found in fragment
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
, while about 6 percent each comes from initial neutrons and gamma rays and those emitted after
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
, plus about 3 percent from
neutrino A neutrino ( ; denoted by the Greek letter ) is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that i ...
s as the product of such decay.


Radioactive decay

Nuclear fission can occur without neutron bombardment as a type of radioactive decay. This type of fission is called
spontaneous fission Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic proc ...
, and was first observed in 1940.


Nuclear reaction

During induced fission, a compound system is formed after an incident particle fuses with a target. The resultant excitation energy may be sufficient to emit neutrons, or gamma-rays, and nuclear scission. Fission into two fragments is called binary fission, and is the most common
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
. Occurring least frequently is
ternary fission Ternary fission is a comparatively rare (0.2 to 0.4% of events) type of nuclear fission in which three charged products are produced rather than two. As in other nuclear fission processes, other uncharged particles such as multiple neutrons and ...
, in which a third particle is emitted. This third particle is commonly an
α particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced ...
. Since in nuclear fission, the nucleus emits more neutrons than the one it absorbs, a
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that sys ...
is possible. Binary fission may produce any of the fission products, at 95±15 and 135±15 daltons. One example of a binary fission event in the most commonly used
fissile nuclide In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a ...
, , is given as: \ ^\mathrm + \mathrm \longrightarrow ^\mathrm^ \longrightarrow ^\mathrm + ^\mathrm + 2\ \mathrm + 180\ \mathrm However, the binary process happens merely because it is the most probable. In anywhere from two to four fissions per 1000 in a nuclear reactor, ternary fission can produce three positively charged fragments (plus neutrons) and the smallest of these may range from so small a charge and mass as a proton ( ''Z'' = 1), to as large a fragment as
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
(''Z'' = 18). The most common small fragments, however, are composed of 90% helium-4 nuclei with more energy than alpha particles from alpha decay (so-called "long range alphas" at ~16
megaelectronvolt In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When ...
s (MeV)), plus helium-6 nuclei, and tritons (the nuclei of
tritium Tritium () or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.33 years. The tritium nucleus (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of the ...
). Though less common than binary fission, it still produces significant helium-4 and tritium gas buildup in the fuel rods of modern nuclear reactors. Bohr and Wheeler used their
liquid drop model In nuclear physics, the semi-empirical mass formula (SEMF; sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approxima ...
, the packing fraction curve of
Arthur Jeffrey Dempster Arthur Jeffrey Dempster (August 14, 1886 – March 11, 1950) was a Canadian-American physicist best known for his work in mass spectrometry and his discovery in 1935 of the uranium isotope 235U. Early life and education Dempster was born in ...
, and Eugene Feenberg's estimates of nucleus radius and surface tension, to estimate the mass differences of parent and daughters in fission. They then equated this mass difference to energy using Einstein's mass-energy equivalence formula. The stimulation of the nucleus after neutron bombardment was analogous to the vibrations of a liquid drop, with
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
and the
Coulomb force Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the ''electrostatic ...
in opposition. Plotting the sum of these two energies as a function of elongated shape, they determined the resultant energy surface had a saddle shape. The saddle provided an energy barrier called the critical energy barrier. Energy of about 6 MeV provided by the incident neutron was necessary to overcome this barrier and cause the nucleus to fission. According to John Lilley, "The energy required to overcome the barrier to fission is called the ''activation energy'' or ''fission barrier'' and is about 6 MeV for ''A'' ≈ 240. It is found that the activation energy decreases as A increases. Eventually, a point is reached where activation energy disappears altogether...it would undergo very rapid spontaneous fission."
Maria Goeppert Mayer Maria Goeppert Mayer (; ; June 28, 1906 – February 20, 1972) was a German-American theoretical physicist who shared the 1963 Nobel Prize in Physics with J. Hans D. Jensen and Eugene Wigner. One half of the prize was awarded jointly to Goeppe ...
later proposed the
nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. The first shell model was proposed by Dmitri Ivanenk ...
for the nucleus. The nuclides that can sustain a fission chain reaction are suitable for use as
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
s. The most common nuclear fuels are 235U (the isotope of uranium with
mass number The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
235 and of use in nuclear reactors) and 239Pu (the isotope of plutonium with mass number 239). These fuels break apart into a bimodal range of chemical elements with atomic masses centering near 95 and 135 daltons (
fission products Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
). Most nuclear fuels undergo spontaneous fission only very slowly, decaying instead mainly via an
alpha Alpha (uppercase , lowercase ) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter ''aleph'' , whose name comes from the West Semitic word for ' ...
-
beta Beta (, ; uppercase , lowercase , or cursive ; or ) is the second letter of the Greek alphabet. In the system of Greek numerals, it has a value of 2. In Ancient Greek, beta represented the voiced bilabial plosive . In Modern Greek, it represe ...
decay chain In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather ...
over periods of
millennia A millennium () is a period of one thousand years, one hundred decades, or ten centuries, sometimes called a kiloannum (ka), or kiloyear (ky). Normally, the word is used specifically for periods of a thousand years that begin at the starting p ...
to eons. In a nuclear reactor or nuclear weapon, the overwhelming majority of fission events are induced by bombardment with another particle, a neutron, which is itself produced by prior fission events.
Fissionable In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in ...
isotopes such as uranium-238 require additional energy provided by
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s (such as those produced by nuclear fusion in
thermonuclear weapons A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
). While ''some'' of the neutrons released from the fission of are fast enough to induce another fission in , ''most'' are not, meaning it can never achieve criticality. While there is a very small (albeit nonzero) chance of a thermal neutron inducing fission in ,
neutron absorption Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
is orders of magnitude more likely.


Energetics


Input

Fission cross sections are a measurable property related to the probability that fission will occur in a nuclear reaction. Cross sections are a function of incident neutron energy, and those for and are a million times higher than at lower neutron energy levels. Absorption of any neutron makes available to the nucleus binding energy of about 5.3 MeV. needs a fast neutron to supply the additional 1 MeV needed to cross the critical energy barrier for fission. In the case of however, that extra energy is provided when adjusts from an odd to an even mass. In the words of Younes and Lovelace, "...the neutron absorption on a target forms a nucleus with excitation energy greater than the critical fission energy, whereas in the case of ''n'' + , the resulting nucleus has an excitation energy below the critical fission energy." About 6 MeV of the fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission. Uranium-238, for example, has a near-zero fission cross section for neutrons of less than 1 MeV energy. If no additional energy is supplied by any other mechanism, the nucleus will not fission, but will merely absorb the neutron, as happens when absorbs slow and even some fraction of fast neutrons, to become . The remaining energy to initiate fission can be supplied by two other mechanisms: one of these is more kinetic energy of the incoming neutron, which is increasingly able to fission a
fissionable In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in ...
heavy nucleus as it exceeds a kinetic energy of 1 MeV or more (so-called fast neutrons). Such high energy neutrons are able to fission directly (see
thermonuclear weapon A thermonuclear weapon, fusion weapon or hydrogen bomb (H-bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
for application, where the fast neutrons are supplied by nuclear fusion). However, this process cannot happen to a great extent in a nuclear reactor, as too small a fraction of the fission neutrons produced by any type of fission have enough energy to efficiently fission . (For example, neutrons from thermal fission of have a
mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
energy of 2 MeV, a
median The median of a set of numbers is the value separating the higher half from the lower half of a Sample (statistics), data sample, a statistical population, population, or a probability distribution. For a data set, it may be thought of as the “ ...
energy of 1.6 MeV, and a
mode Mode ( meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * MO''D''E (magazine), a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is the setting fo ...
of 0.75 MeV, and the energy spectrum for fast fission is similar.) Among the heavy
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
elements, however, those isotopes that have an odd number of neutrons (such as 235U with 143 neutrons) bind an extra neutron with an additional 1 to 2 MeV of energy over an isotope of the same element with an even number of neutrons (such as 238U with 146 neutrons). This extra binding energy is made available as a result of the mechanism of neutron pairing effects, which itself is caused by the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle (German: Pauli-Ausschlussprinzip) states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that o ...
, allowing an extra neutron to occupy the same nuclear orbital as the last neutron in the nucleus. In such isotopes, therefore, no neutron kinetic energy is needed, for all the necessary energy is supplied by absorption of any neutron, either of the slow or fast variety (the former are used in moderated nuclear reactors, and the latter are used in
fast-neutron reactor A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow t ...
s, and in weapons). According to Younes and Loveland, "Actinides like that fission easily following the absorption of a thermal (0.25 meV) neutron are called ''fissile'', whereas those like that do not easily fission when they absorb a thermal neutron are called ''fissionable''."


Output

After an incident particle has fused with a parent nucleus, if the excitation energy is sufficient, the nucleus breaks into fragments. This is called scission, and occurs at about 10−20 seconds. The fragments can emit prompt neutrons at between 10−18 and 10−15 seconds. At about 10−11 seconds, the fragments can emit gamma rays. At 10−3 seconds β decay, β-
delayed neutron In nuclear engineering, a delayed neutron is a neutron released not immediately during a nuclear fission event, but shortly afterward—ranging from milliseconds to several minutes later. These neutrons are emitted by excited daughter nuclei of ce ...
s, and gamma rays are emitted from the
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( d ...
s. Typical fission events release about two hundred million eV (200 MeV) of energy for each fission event. The exact isotope which is fissioned, and whether or not it is fissionable or fissile, has only a small impact on the amount of energy released. This can be easily seen by examining the curve of
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
(image below), and noting that the average binding energy of the actinide nuclides beginning with uranium is around 7.6 MeV per nucleon. Looking further left on the curve of binding energy, where the fission products cluster, it is easily observed that the binding energy of the fission products tends to center around 8.5 MeV per nucleon. Thus, in any fission event of an isotope in the actinide mass range, roughly 0.9 MeV are released per nucleon of the starting element. The fission of 235U by a slow neutron yields nearly identical energy to the fission of 238U by a fast neutron. This energy release profile holds for thorium and the various minor actinides as well. When a
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleusHans A. Bethe (April 1950)
"The Hydrogen Bomb"
''Bulletin of the Atomic Scientists'', p. 99.
appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which fly apart at about 3% of the speed of light, due to
Coulomb repulsion Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the ''electrostatic f ...
. Also, an average of 2.5 neutrons are emitted, with a
mean A mean is a quantity representing the "center" of a collection of numbers and is intermediate to the extreme values of the set of numbers. There are several kinds of means (or "measures of central tendency") in mathematics, especially in statist ...
kinetic energy per neutron of ~2 MeV (total of 4.8 MeV). The fission reaction also releases ~7 MeV in prompt gamma ray
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. The latter figure means that a nuclear fission explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons (total of both types of radiation ~6%), and the rest as kinetic energy of fission fragments (this appears almost immediately when the fragments impact surrounding matter, as simple heat). Some processes involving neutrons are notable for absorbing or finally yielding energy — for example neutron kinetic energy does not yield heat immediately if the neutron is captured by a uranium-238 atom to breed plutonium-239, but this energy is emitted if the plutonium-239 is later fissioned. On the other hand, so-called delayed neutrons emitted as radioactive decay products with half-lives up to several minutes, from fission-daughters, are very important to reactor control, because they give a characteristic "reaction" time for the total nuclear reaction to double in size, if the reaction is run in a " delayed-critical" zone which deliberately relies on these neutrons for a supercritical chain-reaction (one in which each fission cycle yields more neutrons than it absorbs). Without their existence, the nuclear chain-reaction would be
prompt critical In nuclear engineering, prompt criticality is the criticality (the state in which a nuclear chain reaction is self-sustaining) that is achieved with prompt neutrons alone (without the efforts of delayed neutrons). As a result, prompt supercritic ...
and increase in size faster than it could be controlled by human intervention. In this case, the first experimental atomic reactors would have run away to a dangerous and messy "prompt critical reaction" before their operators could have manually shut them down (for this reason, designer
Enrico Fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian and naturalized American physicist, renowned for being the creator of the world's first artificial nuclear reactor, the Chicago Pile-1, and a member of the Manhattan Project ...
included radiation-counter-triggered control rods, suspended by electromagnets, which could automatically drop into the center of
Chicago Pile-1 Chicago Pile-1 (CP-1) was the first artificial nuclear reactor. On 2 December 1942, the first human-made self-sustaining nuclear chain reaction was initiated in CP-1 during an experiment led by Enrico Fermi. The secret development of the react ...
). If these delayed neutrons are captured without producing fissions, they produce heat as well.


Binding energy

The binding energy of the nucleus is the difference between the rest-mass energy of the nucleus and the rest-mass energy of the neutron and proton nucleons. The binding energy formula includes volume, surface and Coulomb energy terms that include empirically derived coefficients for all three, plus energy ratios of a deformed nucleus relative to a spherical form for the surface and Coulomb terms. Additional terms can be included such as symmetry, pairing, the finite range of the nuclear force, and charge distribution within the nuclei to improve the estimate. Normally binding energy is referred to and plotted as average binding energy per nucleon. According to Lilley, "The binding energy of a nucleus is the energy required to separate it into its constituent neutrons and protons." m(\mathbf,\mathbf) = \mathbfm_H + \mathbfm_n - \mathbf/c^2 where is
mass number The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
, is
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
, is the atomic mass of a hydrogen atom, is the mass of a neutron, and is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
. Thus, the mass of an atom is less than the mass of its constituent protons and neutrons, assuming the average binding energy of its electrons is negligible. The binding energy is expressed in energy units, using Einstein's mass-energy equivalence relationship. The binding energy also provides an estimate of the total energy released from fission. The curve of binding energy is characterized by a broad maximum near mass number 60 at 8.6 MeV, then gradually decreases to 7.6 MeV at the highest mass numbers. Mass numbers higher than 238 are rare. At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8, carbon-12, oxygen-16, neon-20 and magnesium-24. Binding energy due to the nuclear force approaches a constant value for large , while the Coulomb acts over a larger distance so that electrical potential energy per proton grows as increases. Fission energy is released when a is larger than approx. 60. Fusion energy is released when lighter nuclei combine. Carl Friedrich von Weizsäcker's
semi-empirical mass formula In nuclear physics, the semi-empirical mass formula (SEMF; sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approxim ...
may be used to express the binding energy as the sum of five terms, which are the volume energy, a surface correction, Coulomb energy, a symmetry term, and a pairing term: B = a_v\mathbf - a_s\mathbf^ - a_c\frac - a_a\frac\pm\Delta where the nuclear binding energy is proportional to the nuclear volume, while nucleons near the surface interact with fewer nucleons, reducing the effect of the volume term. According to Lilley, "For all naturally occurring nuclei, the surface-energy term dominates and the nucleus exists in a state of equilibrium." The negative contribution of Coulomb energy arises from the repulsive electric force of the protons. The symmetry term arises from the fact that effective forces in the nucleus are stronger for unlike neutron-proton pairs, rather than like neutron–neutron or proton–proton pairs. The pairing term arises from the fact that like nucleons form spin-zero pairs in the same spatial state. The pairing is positive if and are both even, adding to the binding energy. In fission there is a preference for
fission fragment Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s with even , which is called the odd–even effect on the fragments' charge distribution. This can be seen in the empirical fragment yield data for each fission product, as products with even have higher yield values. However, no odd–even effect is observed on fragment distribution based on their . This result is attributed to nucleon pair breaking. In nuclear fission events the nuclei may break into any combination of lighter nuclei, but the most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass of about 90 to 100 daltons and the other the remaining 130 to 140 daltons. Stable nuclei, and unstable nuclei with very long
half-lives Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * '' Half Life: A Parable for t ...
, follow a trend of stability evident when is plotted against . For lighter nuclei less than = 20, the line has the slope = , while the heavier nuclei require additional neutrons to remain stable. Nuclei that are neutron- or proton-rich have excessive binding energy for stability, and the excess energy may convert a neutron to a proton or a proton to a neutron via the weak nuclear force, a process known as
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
. Neutron-induced fission of U-235 emits a total energy of 207 MeV, of which about 200 MeV is recoverable, Prompt fission fragments amount to 168 MeV, which are easily stopped with a fraction of a millimeter. Prompt neutrons total 5 MeV, and this energy is recovered as heat via scattering in the reactor. However, many fission fragments are neutron-rich and decay via β emissions. According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely."


Chain reactions

John Lilley states, "...neutron-induced fission generates extra neutrons which can induce further fissions in the next generation and so on in a chain reaction. The chain reaction is characterized by the ''neutron multiplication factor k'', which is defined as the ratio of the number of neutrons in one generation to the number in the preceding generation. If, in a reactor, ''k'' is less than unity, the reactor is subcritical, the number of neutrons decreases and the chain reaction dies out. If ''k'' > 1, the reactor is supercritical and the chain reaction diverges. This is the situation in a fission bomb where growth is at an explosive rate. If ''k'' is exactly unity, the reactions proceed at a steady rate and the reactor is said to be critical. It is possible to achieve criticality in a reactor using natural uranium as fuel, provided that the neutrons have been efficiently moderated to thermal energies." Moderators include light water,
heavy water Heavy water (deuterium oxide, , ) is a form of water (molecule), water in which hydrogen atoms are all deuterium ( or D, also known as ''heavy hydrogen'') rather than the common hydrogen-1 isotope (, also called ''protium'') that makes up most o ...
, and
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
. According to John C. Lee, "For all nuclear reactors in operation and those under development, the
nuclear fuel cycle The nuclear fuel cycle, also known as the nuclear fuel chain, describes the series of stages that nuclear fuel undergoes during its production, use, and recycling or disposal. It consists of steps in the ''front end'', which are the preparation o ...
is based on one of three ''fissile'' materials, 235U, 233U, and 239Pu, and the associated isotopic chains. For the current generation of LWRs, the enriched U contains 2.5~4.5
wt% In chemistry, the mass fraction of a substance within a mixture is the ratio w_i (alternatively denoted Y_i) of the mass m_i of that substance to the total mass m_\text of the mixture. Expressed as a formula, the mass fraction is: : w_i = \frac ...
of 235U, which is fabricated into UO2
fuel rod Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is usually based o ...
s and loaded into fuel assemblies." Lee states, "One important comparison for the three major fissile nuclides, 235U, 233U, and 239Pu, is their breeding potential. A ''breeder'' is by definition a reactor that produces more fissile material than it consumes and needs a minimum of two neutrons produced for each neutron absorbed in a fissile nucleus. Thus, in general, the ''conversion ratio (CR) is defined as the ratio of fissile material produced to that destroyed''...when the CR is greater than 1.0, it is called the ''breeding ratio'' (BR)...233U offers a superior breeding potential for both thermal and fast reactors, while 239Pu offers a superior breeding potential for fast reactors."


Fission reactors

Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission reactions are subcritical fission reactors. Such devices use radioactive decay or
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s to trigger fissions. Critical fission reactors are built for three primary purposes, which typically involve different engineering trade-offs to take advantage of either the heat or the neutrons produced by the fission chain reaction: *'' power reactors'' are intended to produce heat for nuclear power, either as part of a
generating station A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the electricity generation, generation of electric power. Power stations are generally connected to an electr ...
or a local power system such as a
nuclear submarine A nuclear submarine is a submarine powered by a nuclear reactor, but not necessarily nuclear-armed. Nuclear submarines have considerable performance advantages over "conventional" (typically diesel-electric) submarines. Nuclear propulsion ...
. *''
research reactor Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritim ...
s'' are intended to produce neutrons and/or activate radioactive sources for scientific, medical, engineering, or other research purposes. *''
breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the ...
s'' are intended to produce nuclear fuels in bulk from more abundant
isotopes Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but ...
. The better known
fast breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be Nuclear fuel, fueled with more-commonly available isotopes of uranium and Isotopes of thorium, thorium, such as uranium-238 and t ...
makes 239Pu (a nuclear fuel) from the naturally very abundant 238U (not a nuclear fuel). Thermal breeder reactors previously tested using 232Th to breed the fissile isotope 233U (
thorium fuel cycle The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, , as the fertile material. In the reactor, is transmuted into the fissile artificial uranium isotope which is the nuclear fuel. Unlike natural uranium, natural ...
) continue to be studied and developed. While, in principle, all fission reactors can act in all three capacities, in practice the tasks lead to conflicting engineering goals and most reactors have been built with only one of the above tasks in mind. (There are several early counter-examples, such as the
Hanford Hanford may refer to: Places *Hanford (constituency), a constituency in Tuen Mun, People's Republic of China *Hanford, Dorset, a village and parish in England *Hanford, Staffordshire, England *Hanford, California, United States *Hanford, Iowa, ...
N reactor, now decommissioned). As of 2019, the 448 nuclear power plants worldwide provided a capacity of 398 GWE, with about 85% being light-water cooled reactors such as
pressurized water reactors A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan, India and Canada). In a PWR, water is used both as ...
or
boiling water reactors A boiling water reactor (BWR) is a type of nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR). BWR are thermal neutro ...
. Energy from fission is transmitted through conduction or convection to the
nuclear reactor coolant A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary co ...
, then to a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
, and the resultant generated steam is used to drive a turbine or generator.


Fission bombs

The objective of an atomic bomb is to produce a device, according to Serber, "...in which energy is released by a fast neutron chain reaction in one or more of the materials known to show nuclear fission." According to Rhodes, "Untamped, a bomb core even as large as twice the
critical mass In nuclear engineering, critical mass is the minimum mass of the fissile material needed for a sustained nuclear chain reaction in a particular setup. The critical mass of a fissionable material depends upon its nuclear properties (specific ...
would completely fission less than 1 percent of its nuclear material before it expanded enough to stop the chain reaction from proceeding. Tamper always increased efficiency: it reflected neutrons back into the core and its inertia...slowed the core's expansion and helped keep the core surface from blowing away." Rearrangement of the core material's subcritical components would need to proceed as fast as possible to ensure effective detonation. Additionally, a third basic component was necessary, "...an initiator—a Ra + Be source or, better, a Po + Be source, with the radium or polonium attached perhaps to one piece of the core and the beryllium to the other, to smash together and spray neutrons when the parts mated to start the chain reaction." However, any bomb would "necessitate locating, mining and processing hundreds of tons of uranium ore...", while U-235 separation or the production of Pu-239 would require additional industrial capacity.


History


Discovery of nuclear fission

The discovery of nuclear fission occurred in 1938 in the buildings of the
Kaiser Wilhelm Society The Kaiser Wilhelm Society for the Advancement of Science () was a German scientific institution established in the German Empire in 1911. Its functions were taken over by the Max Planck Society. The Kaiser Wilhelm Society was an umbrella organi ...
for Chemistry, today part of the
Free University of Berlin The Free University of Berlin (, often abbreviated as FU Berlin or simply FU) is a public university, public research university in Berlin, Germany. It was founded in West Berlin in 1948 with American support during the early Cold War period a ...
, following over four decades of work on the science of
radioactivity Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
and the elaboration of new nuclear physics that described the components of atoms. In 1911,
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
proposed a model of the atom in which a very small, dense and positively charged nucleus of protons was surrounded by orbiting, negatively charged electrons (the
Rutherford model The Rutherford model is a name for the first model of an atom with a compact nucleus. The concept arose from Ernest Rutherford discovery of the nucleus. Rutherford directed the Geiger–Marsden experiment in 1909, which showed much more alpha ...
).
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
improved upon this in 1913 by reconciling the quantum behavior of electrons (the
Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
). In 1928,
George Gamow George Gamow (sometimes Gammoff; born Georgiy Antonovich Gamov; ; 4 March 1904 – 19 August 1968) was a Soviet and American polymath, theoretical physicist and cosmologist. He was an early advocate and developer of Georges Lemaître's Big Ba ...
proposed the
Liquid drop model In nuclear physics, the semi-empirical mass formula (SEMF; sometimes also called the Weizsäcker formula, Bethe–Weizsäcker formula, or Bethe–Weizsäcker mass formula to distinguish it from the Bethe–Weizsäcker process) is used to approxima ...
, which became essential to understanding the physics of fission. In 1896,
Henri Becquerel Antoine Henri Becquerel ( ; ; 15 December 1852 – 25 August 1908) was a French nuclear physicist who shared the 1903 Nobel Prize in Physics with Marie and Pierre Curie for his discovery of radioactivity. Biography Family and education Becq ...
had found, and
Marie Curie Maria Salomea Skłodowska-Curie (; ; 7 November 1867 – 4 July 1934), known simply as Marie Curie ( ; ), was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity. She was List of female ...
named, radioactivity. In 1900, Rutherford and
Frederick Soddy Frederick Soddy FRS (2 September 1877 – 22 September 1956) was an English radiochemist who explained, with Ernest Rutherford, that radioactivity is due to the transmutation of elements, now known to involve nuclear reactions. He also pr ...
, investigating the radioactive gas emanating from
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
, "conveyed the tremendous and inevitable conclusion that the element thorium was slowly and spontaneously transmuting itself into argon gas!" In 1919, following up on an earlier anomaly
Ernest Marsden Sir Ernest Marsden (19 February 1889 – 15 December 1970) was an English-New Zealand physicist. He is recognised internationally for his contributions to science while working under Ernest Rutherford, which led to the discovery of new theories ...
noted in 1915, Rutherford attempted to "break up the atom." Rutherford was able to accomplish the first artificial transmutation of
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
into
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
, using alpha particles directed at nitrogen 14N + α → 17O + p.  Rutherford stated, "...we must conclude that the nitrogen atom is disintegrated," while the newspapers stated he had ''split the atom''. This was the first observation of a nuclear reaction, that is, a reaction in which particles from one decay are used to transform another atomic nucleus. It also offered a new way to study the nucleus. Rutherford and
James Chadwick Sir James Chadwick (20 October 1891 – 24 July 1974) was an English nuclear physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired t ...
then used alpha particles to "disintegrate" boron, fluorine, sodium, aluminum, and phosphorus before reaching a limitation associated with the energy of his alpha particle source. Eventually, in 1932, a fully artificial nuclear reaction and nuclear transmutation was achieved by Rutherford's colleagues
Ernest Walton Ernest Thomas Sinton Walton (6 October 1903 – 25 June 1995) was an Irish nuclear physicist who shared the 1951 Nobel Prize in Physics with John Cockcroft "for their pioneer work on the transmutation of atomic nuclei by artificially accelerate ...
and
John Cockcroft Sir John Douglas Cockcroft (27 May 1897 – 18 September 1967) was an English nuclear physicist who shared the 1951 Nobel Prize in Physics with Ernest Walton for their splitting of the atomic nucleus, which was instrumental in the developmen ...
, who used artificially accelerated protons against lithium-7, to split this nucleus into two alpha particles. The feat was popularly known as "splitting the atom", and would win them the 1951 Nobel Prize in Physics for ''"Transmutation of atomic nuclei by artificially accelerated atomic particles"'', although it was not the nuclear fission reaction later discovered in heavy elements. English physicist
James Chadwick Sir James Chadwick (20 October 1891 – 24 July 1974) was an English nuclear physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired t ...
discovered the neutron in 1932. Chadwick used an
ionization chamber The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionall ...
to observe protons knocked out of several elements by beryllium radiation, following up on earlier observations made by Joliot-Curies. In Chadwick's words, "...In order to explain the great penetrating power of the radiation we must further assume that the particle has no net charge..." The existence of the neutron was first postulated by Rutherford in 1920, and in the words of Chadwick, "...how on earth were you going to build up a big nucleus with a large positive charge? And the answer was a neutral particle." Subsequently, he communicated his findings in more detail. In the words of
Richard Rhodes Richard Lee Rhodes (born July 4, 1937) is an American historian, journalist, and author of both fiction and nonfiction, including the Pulitzer Prize-winning '' The Making of the Atomic Bomb'' (1986), and most recently, ''Energy: A Human History ...
, referring to the neutron, "It would therefore serve as a new nuclear probe of surpassing power of penetration."
Philip Morrison Philip Morrison (November 7, 1915 – April 22, 2005) was a professor of physics at the Massachusetts Institute of Technology (MIT). He is known for his work on the Manhattan Project during World War II, and for his later work in quantum physic ...
stated, "A beam of
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wit ...
s moving at about the speed of sound...produces nuclear reactions in many materials much more easily than a beam of protons...traveling thousands of times faster." According to Rhodes, "Slowing down a neutron gave it more time in the vicinity of the nucleus, and that gave it more time to be captured." Fermi's team, studying radiative capture which is the emission of gamma radiation after the nucleus captures a neutron, studied sixty elements, inducing radioactivity in forty. In the process, they discovered the ability of hydrogen to slow down the neutrons.
Enrico Fermi Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian and naturalized American physicist, renowned for being the creator of the world's first artificial nuclear reactor, the Chicago Pile-1, and a member of the Manhattan Project ...
and his colleagues in
Rome Rome (Italian language, Italian and , ) is the capital city and most populated (municipality) of Italy. It is also the administrative centre of the Lazio Regions of Italy, region and of the Metropolitan City of Rome. A special named with 2, ...
studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which the group dubbed
ausenium and hesperium ''Ausenium'' (atomic symbol Ao) and ''Hesperium'' (atomic symbol Es) were the names initially assigned to the transuranic elements with atomic numbers 93 and 94, respectively. The discovery of the elements, now discredited, was made by Enrico Fermi ...
. However, not all were convinced by Fermi's analysis of his results, though he would win the 1938
Nobel Prize in Physics The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". The German chemist
Ida Noddack Ida Noddack (25 February 1896 – 24 September 1978), ''née'' Tacke, was a German chemist and physicist. In 1934 she was the first to mention the idea later named nuclear fission. With her husband Walter Noddack, and Otto Berg, she discovered ...
notably suggested in 1934 that instead of creating a new, heavier element 93, that "it is conceivable that the nucleus breaks up into several large fragments." However, the quoted objection comes some distance down, and was but one of several gaps she noted in Fermi's claim. Although Noddack was a renowned analytical chemist, she lacked the background in physics to appreciate the enormity of what she was proposing. After the Fermi publication,
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
,
Lise Meitner Elise Lise Meitner ( ; ; 7 November 1878 – 27 October 1968) was an Austrian-Swedish nuclear physicist who was instrumental in the discovery of nuclear fission. After completing her doctoral research in 1906, Meitner became the second woman ...
, and
Fritz Strassmann Friedrich Wilhelm Strassmann (; 22 February 1902 – 22 April 1980) was a German chemist who, with Otto Hahn in December 1938, identified the element barium as a product of the bombardment of uranium with neutrons. Their observation was the key ...
began performing similar experiments in
Berlin Berlin ( ; ) is the Capital of Germany, capital and largest city of Germany, by both area and List of cities in Germany by population, population. With 3.7 million inhabitants, it has the List of cities in the European Union by population withi ...
. Meitner, an Austrian Jew, lost her Austrian citizenship with the ''
Anschluss The (, or , ), also known as the (, ), was the annexation of the Federal State of Austria into Nazi Germany on 12 March 1938. The idea of an (a united Austria and Germany that would form a "German Question, Greater Germany") arose after t ...
'', the union of Austria with Germany in March 1938, but she fled in July 1938 to Sweden and started a correspondence by mail with Hahn in Berlin. By coincidence, her nephew
Otto Robert Frisch Otto Robert Frisch (1 October 1904 – 22 September 1979) was an Austrian-born British physicist who worked on nuclear physics. With Otto Stern and Immanuel Estermann, he first measured the magnetic moment of the proton. With his aunt, Lise M ...
, also a refugee, was also in Sweden when Meitner received a letter from Hahn dated 19 December describing his chemical proof that some of the product of the bombardment of uranium with neutrons was
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
. Hahn suggested a ''bursting'' of the nucleus, but he was unsure of what the physical basis for the results were. Barium had an atomic mass 40% less than uranium, and no previously known methods of radioactive decay could account for such a large difference in the mass of the nucleus. Frisch was skeptical, but Meitner trusted Hahn's ability as a chemist. Marie Curie had been separating barium from radium for many years, and the techniques were well known. Meitner and Frisch then correctly interpreted Hahn's results to mean that the nucleus of uranium had split roughly in half. Frisch suggested the process be named "nuclear fission", by analogy to the process of living cell division into two cells, which was then called
binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two values (0 and 1) for each digit * Binary function, a function that takes two arguments * Binary operation, a mathematical o ...
. Just as the term nuclear "chain reaction" would later be borrowed from chemistry, so the term "fission" was borrowed from biology. News spread quickly of the new discovery, which was correctly seen as an entirely novel physical effect with great scientific—and potentially practical—possibilities. Meitner's and Frisch's interpretation of the discovery of Hahn and Strassmann crossed the Atlantic Ocean with Niels Bohr, who was to lecture at
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
. I.I. Rabi and
Willis Lamb Willis Eugene Lamb Jr. (; July 12, 1913 – May 15, 2008) was an American physicist who shared the 1955 Nobel Prize in Physics with Polykarp Kusch "for his discoveries concerning the fine structure of the hydrogen spectrum". Lamb was able to p ...
, two
Columbia University Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
physicists working at Princeton, heard the news and carried it back to Columbia. Rabi said he told Enrico Fermi; Fermi gave credit to Lamb. Bohr soon thereafter went from Princeton to Columbia to see Fermi. Not finding Fermi in his office, Bohr went down to the cyclotron area and found
Herbert L. Anderson Herbert Lawrence Anderson (May 24, 1914 – July 16, 1988) was an American nuclear physicist who was Professor of Physics at the University of Chicago. He contributed to the Manhattan Project. He was also a member of the team which made the fi ...
. Bohr grabbed him by the shoulder and said: "Young man, let me explain to you about something new and exciting in physics." It was clear to a number of scientists at Columbia that they should try to detect the energy released in the nuclear fission of uranium from neutron bombardment. On 25 January 1939, a Columbia University team conducted the first nuclear fission experiment in the United States, which was done in the basement of
Pupin Hall Pupin Physics Laboratories , also known as Pupin Hall, is home to the physics and astronomy departments of Columbia University in New York City. The building is located on the south side of 120th Street, just east of Broadway. In 1965, Pupin ...
. The experiment involved placing uranium oxide inside of an ionization chamber and irradiating it with neutrons, and measuring the energy thus released. The results confirmed that fission was occurring and hinted strongly that it was the isotope
uranium 235 Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
in particular that was fissioning. The next day, the fifth
Washington Conference on Theoretical Physics The Washington Conferences on Theoretical Physics were ten academic conferences held annually in Washington, D.C., United States from 1935 to 1947. The conferences were organized by nuclear physicists George Gamow and Edward Teller from George Wash ...
began in
Washington, D.C. Washington, D.C., formally the District of Columbia and commonly known as Washington or D.C., is the capital city and federal district of the United States. The city is on the Potomac River, across from Virginia, and shares land borders with ...
under the joint auspices of the George Washington University and the
Carnegie Institution of Washington The Carnegie Institution for Science, also known as Carnegie Science and the Carnegie Institution of Washington, is an organization established to fund and perform scientific research in the United States. This institution is headquartered in W ...
. There, the news on nuclear fission was spread even further, which fostered many more experimental demonstrations. The 6 January 1939 Hahn and Strassman paper announced the discover of fission. In their second publication on nuclear fission in February 1939, Hahn and Strassmann used the term ''Uranspaltung'' (uranium fission) for the first time, and predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction. The 11 February 1939 paper by Meitner and Frisch compared the process to the division of a liquid drop and estimated the energy released at 200 MeV. The 1 September 1939 paper by Bohr and Wheeler used this liquid drop model to quantify fission details, including the energy released, estimated the cross section for neutron-induced fission, and deduced was the major contributor to that cross section and slow-neutron fission.


Fission chain reaction realized

During this period the Hungarian physicist
Leó Szilárd Leo Szilard (; ; born Leó Spitz; February 11, 1898 – May 30, 1964) was a Hungarian-born physicist, biologist and inventor who made numerous important discoveries in nuclear physics and the biological sciences. He conceived the nuclear ...
realized that the neutron-driven fission of heavy atoms could be used to create a nuclear chain reaction. Such a reaction using neutrons was an idea he had first formulated in 1933, upon reading Rutherford's disparaging remarks about generating power from neutron collisions. However, Szilárd had not been able to achieve a neutron-driven chain reaction using beryllium. Szilard stated, "...if we could find an element which is split by neutrons and which would emit ''two'' neutrons when it absorbs ''one'' neutron, such an element, if assembled in sufficiently large mass, could sustain a nuclear chain reaction." On 25 January 1939, after learning of Hahn's discovery from
Eugene Wigner Eugene Paul Wigner (, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his contributions to the theory of th ...
, Szilard noted, "...if enough neutrons are emitted...then it should be, of course, possible to sustain a chain reaction. All of the things which
H. G. Wells Herbert George Wells (21 September 1866 – 13 August 1946) was an English writer, prolific in many genres. He wrote more than fifty novels and dozens of short stories. His non-fiction output included works of social commentary, politics, hist ...
predicted appeared suddenly real to me." After the Hahn-Strassman paper was published, Szilard noted in a letter to
Lewis Strauss Lewis Lichtenstein Strauss ( ; January 31, 1896January 21, 1974) was an American government official, businessman, philanthropist, and naval officer. He was one of the original members of the United States Atomic Energy Commission (AEC) in 1946 ...
, that during the fission of uranium, "the energy released in this new reaction must be very much higher than all previously known cases...," which might lead to "large-scale production of energy and radioactive elements, unfortunately also perhaps to atomic bombs." Szilard now urged Fermi (in New York) and
Frédéric Joliot-Curie Jean Frédéric Joliot-Curie (; ; 19 March 1900 – 14 August 1958) was a French chemist and physicist who received the 1935 Nobel Prize in Chemistry with his wife, Irène Joliot-Curie, for their discovery of induced radioactivity. They were t ...
(in Paris) to refrain from publishing on the possibility of a chain reaction, lest the Nazi government become aware of the possibilities on the eve of what would later be known as
World War II World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
. With some hesitation Fermi agreed to self-censor. But Joliot-Curie did not, and in April 1939 his team in Paris, including
Hans von Halban Hans Heinrich von Halban (24 January 1908 – 28 November 1964) was a French physicist of Austrian-Jewish descent. Family He is a descendant of Polish Jews who left Kraków for Vienna in the 1850s on his father's side. His grandfather, Heinric ...
and
Lew Kowarski Lew Kowarski (10 February 1907 – 30 July 1979) was a Russian-French physicist. He was a lesser-known but important contributor to nuclear science. He participated in the British Tube Alloys on early nuclear weapon research. After the war he wor ...
, reported in the journal ''Nature'' that the number of neutrons emitted with nuclear fission of uranium was then reported at 3.5 per fission. Szilard and
Walter Zinn Walter Henry Zinn (December 10, 1906 – February 14, 2000) was a Canadian-born American nuclear physicist who was the first director of the Argonne National Laboratory from 1946 to 1956. He worked at the Manhattan Project's Metallurgical Labor ...
found "...the number of neutrons emitted by fission to be about two." Fermi and Anderson estimated "a yield of about two neutrons per each neutron captured." With the news of fission neutrons from uranium fission, Szilárd immediately understood the possibility of a nuclear chain reaction using uranium. In the summer, Fermi and Szilard proposed the idea of a nuclear reactor (pile) to mediate this process. The pile would use natural uranium as fuel. Fermi had shown much earlier that neutrons were far more effectively captured by atoms if they were of low energy (so-called "slow" or "thermal" neutrons), because for quantum reasons it made the atoms look like much larger targets to the neutrons. Thus to slow down the secondary neutrons released by the fissioning uranium nuclei, Fermi and Szilard proposed a graphite "moderator", against which the fast, high-energy secondary neutrons would collide, effectively slowing them down. With enough uranium, and with sufficiently pure graphite, their "pile" could theoretically sustain a slow-neutron chain reaction. This would result in the production of heat, as well as the creation of radioactive fission products. In August 1939, Szilard, Teller and
Wigner Eugene Paul Wigner (, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his contributions to the theory of th ...
thought that the Germans might make use of the fission chain reaction and were spurred to attempt to attract the attention of the United States government to the issue. Towards this, they persuaded
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
to lend his name to a letter directed to President
Franklin Roosevelt Franklin Delano Roosevelt (January 30, 1882April 12, 1945), also known as FDR, was the 32nd president of the United States, serving from 1933 until his death in 1945. He is the longest-serving U.S. president, and the only one to have served ...
. On 11 October, the Einstein–Szilárd letter was delivered via
Alexander Sachs Alexander Sachs (August 1, 1893 – June 23, 1973) was an American economist and banker. In October 1939 he delivered the Einstein–Szilard letter to President Franklin D. Roosevelt, suggesting that nuclear-fission research ought to be pursued ...
. Roosevelt quickly understood the implications, stating, "Alex, what you are after is to see that the Nazis don't blow us up." Roosevelt ordered the formation of the Advisory Committee on Uranium. In February 1940, encouraged by Fermi and John R. Dunning, Alfred O. C. Nier was able to separate U-235 and U-238 from
uranium tetrachloride Uranium tetrachloride is an inorganic compound, a salt of uranium and chlorine, with the formula UCl4. It is a hygroscopic olive-green solid. It was used in the electromagnetic isotope separation (EMIS) process of uranium enrichment. It is one ...
in a glass mass spectrometer. Subsequently, Dunning, bombarding the U-235 sample with neutrons generated by the Columbia University
cyclotron A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
, confirmed "U-235 was responsible for the slow neutron fission of uranium." At the
University of Birmingham The University of Birmingham (informally Birmingham University) is a Public university, public research university in Birmingham, England. It received its royal charter in 1900 as a successor to Queen's College, Birmingham (founded in 1825 as ...
, Frisch teamed up with Peierls, who had been working on a critical mass formula. assuming isotope separation was possible, they considered 235U, which had a
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture and engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **A ...
not yet determined, but which was assumed to be much larger than that of natural uranium. They calculated only a pound or two in a volume less than a golf ball, would result in a chain reaction faster than vaporization, and the resultant explosion would generate temperature greater than the interior of the sun, and pressures greater than the center of the earth. Additionally, the costs of isotope separation "would be insignificant compared to the cost of the war." By March 1940, encouraged by
Mark Oliphant Sir Marcus Laurence Elwin Oliphant, (8 October 1901 – 14 July 2000) was an Australian physicist and humanitarian who played an important role in the first experimental demonstration of nuclear fusion and in the development of nuclear weapon ...
, they wrote the
Frisch–Peierls memorandum The Frisch–Peierls memorandum was the first technical exposition of a practical nuclear weapon. It was written by expatriate German-Jewish physicists Otto Frisch and Rudolf Peierls in March 1940 while they were both working for Mark Oliphant a ...
in two parts, "On the construction of a 'super-bomb; based on a nuclear chain reaction in uranium," and "Memorandum on the properties of a radioactive 'super-bomb.' ". On 10 April 1940, the first meeting of the
MAUD Committee The MAUD Committee was a British scientific working group formed during the Second World War. It was established to perform the research required to determine if an atomic bomb was feasible. The name MAUD came from a strange line in a telegram fr ...
was held. In December 1940,
Franz Simon Sir Francis Simon (2 July 1893 – 31 October 1956), was a German and later British physical chemist and physicist who devised the gaseous diffusion method, and confirmed its feasibility, of separating the isotope Uranium-235 and thus made a m ...
at Oxford wrote his Estimate of the size of an actual separation plant." Simon proposed
gaseous diffusion Gaseous diffusion is a technology that was used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through microporous membranes. This produces a slight separation (enrichment factor 1.0043) between the molecules containi ...
as the best method for uranium isotope separation. On 28 March 1941,
Emilio Segré Emilio may refer to: * Emilio Navaira, a Mexican-American singer often called "Emilio" * Emilio (given name) * ''Emilio'' (film), a 2008 film by Kim Jorgensen See also * Emílio (disambiguation) * Emilios (disambiguation) Emilios, or Aimilios, (G ...
and
Glen Seaborg Glenn Theodore Seaborg ( ; April 19, 1912February 25, 1999) was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work i ...
reported on the "strong indications that 239Pu undergoes fission with slow neutrons." This meant chemical separation was an alternative to uranium isotope separation. Instead, a nuclear reactor fueled with ordinary uranium could produce a plutonium isotope as a nuclear explosive substitute for 235U. In May, they demonstrated the cross section of plutonium was 1.7 times that of U235. When plutonium's cross section for fast fission was measured to be ten times that of U238, plutonium became a viable option for a bomb. In October 1941, MAUD released its final report to the U.S. Government. The report stated, "We have now reached the conclusion that it will be possible to make an effective uranium bomb...The material for the first bomb could be ready by the end of 1943..." In November 1941, John Dunning and Eugene T. Booth were able to demonstrate the enrichment of uranium through gaseous barrier diffusion. On 27 November, Bush delivered to third
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, NGO, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the ...
report to Roosevelt. The report, amongst other things, called for parallel development of all isotope-separation systems. On 6 December, Bush and Conant reorganized the Uranium Committee's tasks, with
Harold Urey Harold Clayton Urey ( ; April 29, 1893 – January 5, 1981) was an American physical chemist whose pioneering work on isotopes earned him the Nobel Prize in Chemistry in 1934 for the discovery of deuterium. He played a significant role in the ...
developing gaseous diffusion, Lawrence developing electromagnetic separation, Eger V. Murphree developing centrifuges, and
Arthur Compton Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American particle physicist who won the 1927 Nobel Prize in Physics for his discovery of the Compton effect, which demonstrated the particle nature of electromagnetic radiati ...
responsible for theoretical studies and design. On 23 April 1942, Met Lab scientists discussed seven possible ways to extract plutonium from irradiated uranium, and decided to pursue investigation of all seven. On 17 June, the first batch of uranium nitrate hexahydrate (UNH) was undergoing neutron bombardment in the
Washington University in St. Louis Washington University in St. Louis (WashU) is a private research university in St. Louis, Missouri, United States. Founded in 1853 by a group of civic leaders and named for George Washington, the university spans 355 acres across its Danforth ...
cyclotron. On 27 July, the irradiated UNH was ready for
Glenn T. Seaborg Glenn Theodore Seaborg ( ; April 19, 1912February 25, 1999) was an American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry. His work i ...
's team. On 20 August, using ultramicrochemistry techniques, they successfully extracted plutonium. In April 1939, creating a chain reaction in natural uranium became the goal of Fermi and Szilard, as opposed to isotope separation. Their first efforts involved five hundred pounds of uranium oxide from the Eldorado Radium Corporation. Packed into fifty-two cans two inches in diameter and two feet long in a tank of manganese solution, they were able to confirm more neutrons were emitted than absorbed. However, the hydrogen within the water absorbed the slow neutrons necessary for fission. Carbon in the form of graphite, was then considered, because of its smaller capture cross section. In April 1940, Fermi was able to confirm carbon's potential for a slow-neutron chain reaction, after receiving
National Carbon Company The National Carbon Company was a dominant American manufacturer of batteries and lighting products in the early 20th century. It was the first company to successfully manufacture and distribute sealed dry cell batteries on a large scale. It was fo ...
's graphite bricks at their Pupin Laboratories. In August and September, the Columbia team enlarged upon the cross section measurements by making a series of exponential "piles". The first piles consisted of a uranium-graphite lattice, consisting of 288 cans, each containing 60 pounds of uranium oxide, surrounded by graphite bricks. Fermi's goal was to determine critical mass necessary to sustain neutron generation. Fermi defined the
reproduction factor In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of thes ...
k for assessing the chain reaction, with a value of 1.0 denoting a sustained chain reaction. In September 1941, Fermi's team was only able to achieve a k value of 0.87. In April 1942, before the project was centralized in Chicago, they had achieved 0.918 by removing moisture from the oxide. In May 1942, Fermi planned a full-scale chain reacting pile, Chicago Pile-1, after one of the exponential piles at
Stagg Field Amos Alonzo Stagg Field is the name of two successive football fields for the University of Chicago. Beyond sports, the first Stagg Field (1893–1957), named for famed coach, Alonzo Stagg, is remembered for its role in a landmark scientific ac ...
reached a k of 0.995. Between 15 September and 15 November,
Herbert L. Anderson Herbert Lawrence Anderson (May 24, 1914 – July 16, 1988) was an American nuclear physicist who was Professor of Physics at the University of Chicago. He contributed to the Manhattan Project. He was also a member of the team which made the fi ...
and
Walter Zinn Walter Henry Zinn (December 10, 1906 – February 14, 2000) was a Canadian-born American nuclear physicist who was the first director of the Argonne National Laboratory from 1946 to 1956. He worked at the Manhattan Project's Metallurgical Labor ...
built sixteen exponential piles. Acquisition of purer forms of graphite, without traces of boron and its large cross section, became paramount. Also important was the acquisition of highly purified forms of oxide from
Mallinckrodt Mallinckrodt Pharmaceuticals plc is an American-Irish domiciled manufacturer of specialty pharmaceuticals (namely, adrenocorticotropic hormone), generic drugs and imaging agents. In 2017, it generated 90% of its sales from the U.S. healthcare s ...
Chemical Works. Finally, acquiring pure uranium metal from the
Ames process The Ames process is a process by which pure uranium metal is obtained. It can be achieved by mixing any of the uranium halides (commonly uranium tetrafluoride) with magnesium metal powder or aluminium metal powder. History The Ames process ...
, meant the replacement of oxide pseudospheres with
Frank Spedding Frank Harold Spedding (22 October 1902 – 15 December 1984) was a Canadian-American chemist. He was a renowned expert on rare earth elements, and on extraction of metals from minerals. The uranium extraction process helped make it possible fo ...
's "eggs". Starting on 16 November 1942, Fermi had Anderson and Zinn working in two twelve-hours shifts, constructing a pile that eventually reached 57 layers by 1 Dec. The final pile consisted of 771,000 pounds of graphite, 80,590 pounds of uranium oxide, and 12,400 pounds of uranium metal, with ten cadmium
control rod Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing ...
s. Neutron intensity was measured with a
boron trifluoride Boron trifluoride is the inorganic compound with the formula . This pungent, colourless, and toxic gas forms white fumes in moist air. It is a useful Lewis acid and a versatile building block for other boron compounds. Structure and bonding The g ...
counter, with the control rods removed, after the end of each shift. On 2 Dec. 1942, with k approaching 1.0, Fermi had all but one of the control rod removed, and gradually removed the last one. The neutron counter clicks increased, as did the pen recorder, when Fermi announced "The pile has gone critical." They had achieved a k of 1.0006, which meant neutron intensity doubled every two minutes, in addition to breeding plutonium.


Manhattan Project and beyond

In the United States, an all-out effort for making atomic weapons was begun in late 1942. This work was taken over by the
U.S. Army Corps of Engineers The United States Army Corps of Engineers (USACE) is the military engineering branch of the United States Army. A direct reporting unit (DRU), it has three primary mission areas: Engineer Regiment, military construction, and civil wor ...
in 1943, and known as the Manhattan Engineer District. The top-secret
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
, as it was colloquially known, was led by General
Leslie R. Groves Leslie Richard Groves Jr. (17 August 1896 – 13 July 1970) was a United States Army Corps of Engineers officer who oversaw the construction of the Pentagon and directed the Manhattan Project, a top secret research project that developed the ...
. Among the project's dozens of sites were:
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. It has also been known as SiteW and the Hanford Nuclear R ...
in Washington, which had the first industrial-scale nuclear reactors and produced
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
;
Oak Ridge, Tennessee Oak Ridge is a city in Anderson County, Tennessee, Anderson and Roane County, Tennessee, Roane counties in the East Tennessee, eastern part of the U.S. state of Tennessee, about west of downtown Knoxville, Tennessee, Knoxville. Oak Ridge's po ...
, which was primarily concerned with
uranium enrichment Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (23 ...
; and Los Alamos, in New Mexico, which was the scientific hub for research on bomb development and design. Other sites, notably the
Berkeley Radiation Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a federally funded research and development center in the hills of Berkeley, California, United States. Established in 1931 by the University of California (UC), the laboratory is spo ...
and the
Metallurgical Laboratory The Metallurgical Laboratory (or Met Lab) was a scientific laboratory from 1942 to 1946 at the University of Chicago. It was established in February 1942 and became the Argonne National Laboratory in July 1946. The laboratory was established i ...
at the University of Chicago, played important contributing roles. Overall scientific direction of the project was managed by the physicist
J. Robert Oppenheimer J. Robert Oppenheimer (born Julius Robert Oppenheimer ; April 22, 1904 – February 18, 1967) was an American theoretical physics, theoretical physicist who served as the director of the Manhattan Project's Los Alamos Laboratory during World ...
. In July 1945, the first atomic explosive device, dubbed "The Gadget", was detonated in the New Mexico desert in the
Trinity The Trinity (, from 'threefold') is the Christian doctrine concerning the nature of God, which defines one God existing in three, , consubstantial divine persons: God the Father, God the Son (Jesus Christ) and God the Holy Spirit, thr ...
test. It was fueled by plutonium created at Hanford. In August 1945, two more atomic devices – "
Little Boy Little Boy was a type of atomic bomb created by the Manhattan Project during World War II. The name is also often used to describe the specific bomb (L-11) used in the bombing of the Japanese city of Hiroshima by the Boeing B-29 Superfortress ...
", a uranium-235 bomb, and "
Fat Man "Fat Man" (also known as Mark III) was the design of the nuclear weapon the United States used for seven of the first eight nuclear weapons ever detonated in history. It is also the most powerful design to ever be used in warfare. A Fat Man ...
", a plutonium bomb – were used against the Japanese cities of Hiroshima and Nagasaki.


Natural fission chain-reactors on Earth

Criticality in nature is uncommon. At three ore deposits at
Oklo Oklo is a region near Franceville in the Haut-Ogooué Province of Gabon. Several natural nuclear fission reactors were discovered in the uranium mines in the region in 1972. History Gabon was a French colony when prospectors from the Comm ...
in
Gabon Gabon ( ; ), officially the Gabonese Republic (), is a country on the Atlantic coast of Central Africa, on the equator, bordered by Equatorial Guinea to the northwest, Cameroon to the north, the Republic of the Congo to the east and south, and ...
, sixteen sites (the so-called Oklo Fossil Reactors) have been discovered at which self-sustaining nuclear fission took place approximately 2 billion years ago. French physicist Francis Perrin discovered the Oklo Fossil Reactors in 1972, but it was postulated by Paul Kuroda in 1956. Large-scale natural uranium fission chain reactions, moderated by normal water, had occurred far in the past and would not be possible now. This ancient process was able to use normal water as a moderator only because 2 billion years before the present, natural uranium was richer in the shorter-lived fissile isotope 235U (about 3%), than natural uranium available today (which is only 0.7%, and must be enriched to 3% to be usable in light-water reactors).


See also

*
Cold fission Cold fission or cold nuclear fission is defined as involving nuclear fission, fission events for which fission fragments have such low excitation energy that no neutrons or gamma ray, gammas are emitted. Cold fission events have so low a probabil ...
*
Fissile material In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy i ...
* Fission fragment reactor * Hybrid fusion/fission *
Nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
*
Nuclear propulsion Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. Many aircraft carriers and submarines currently use uranium fueled nuclear reactors that can provide propulsio ...
*
Photofission Photofission is a process in which a nucleus, after absorbing a gamma ray, undergoes nuclear fission and splits into two or more fragments. The reaction was discovered in 1940 by a small team of engineers and scientists operating the Westingho ...


References


Further reading

* * *


External links


The Effects of Nuclear WeaponsAnnotated bibliography for nuclear fission from the Alsos Digital Library
Historical account complete with audio and teacher's guides from the American Institute of Physics History Center
atomicarchive.com
Nuclear Fission Explained

What is Nuclear Fission?
Nuclear Fission Animation
{{DEFAULTSORT:Nuclear Fission Nuclear fission Fission, nuclear Nuclear chemistry Neutron sources Radioactivity 1938 in science German inventions German inventions of the Nazi period Austrian inventions