Helly Family
   HOME

TheInfoList



OR:

In
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
, a Helly family of order is a family of sets in which every minimal ''subfamily with an empty
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
'' has or fewer sets in it. Equivalently, every finite subfamily such that every -fold intersection is
non-empty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whil ...
has non-empty total intersection.. The -Helly property is the property of being a Helly family of order .. See in particular Section 2.5, "Helly Property"
pp. 393–394
The number is frequently omitted from these names in the case that . Thus, a set-family has the Helly property if, for every sets s_1,\ldots,s_n in the family, if \forall i,j\in s_i \cap s_j \neq\emptyset , then s_1 \cap \cdots \cap s_n \neq\emptyset . These concepts are named after Eduard Helly (1884–1943);
Helly's theorem Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913,. but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's ...
on
convex set In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is n ...
s, which gave rise to this notion, states that convex sets in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
of dimension are a Helly family of order .


Examples

* In the family of all subsets of the set , the subfamily has an empty intersection, but removing any set from this subfamily causes it to have a nonempty intersection. Therefore, it is a minimal subfamily with an empty intersection. It has four sets in it, and is the largest possible minimal subfamily with an empty intersection, so the family of all subsets of the set is a Helly family of order 4. * Let ''I'' be a finite set of closed intervals of the
real line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced mark ...
with an empty intersection. Let ''A'' be the interval whose left endpoint ''a'' is as large as possible, and let ''B'' be the interval whose right endpoint ''b'' is as small as possible. Then, if ''a'' were less than or equal to ''b'', all numbers in the range 'a'',''b''would belong to all intervals of ''I'', violating the assumption that the intersection of ''I'' is empty, so it must be the case that ''a'' > ''b''. Thus, the two-interval subfamily has an empty intersection, and the family ''I'' cannot be minimal unless ''I'' = . Therefore, all minimal families of intervals with empty intersections have two or fewer intervals in them, showing that the set of all intervals is a Helly family of order 2. * The family of infinite
arithmetic progression An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
s of
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s also has the 2-Helly property. That is, whenever a finite collection of progressions has the property that no two of them are disjoint, then there exists an integer that belongs to all of them; this is the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
.


Formal definition

More formally, a Helly family of order ''k'' is a set system (''V'', ''E''), with ''E'' a collection of
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of ''V'', such that, for every finite ''G'' ⊆ ''E'' with :\bigcap_ X=\varnothing, we can find ''H'' ⊆ ''G'' such that :\bigcap_ X=\varnothing and :\left, H\\le k. In some cases, the same definition holds for every subcollection ''G'', regardless of finiteness. However, this is a more restrictive condition. For instance, the
open interval In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without ...
s of the real line satisfy the Helly property for finite subcollections, but not for infinite subcollections: the intervals (0,1/''i'') (for ''i'' = 0, 1, 2, ...) have pairwise nonempty intersections, but have an empty overall intersection.


Helly dimension

If a family of sets is a Helly family of order ''k'', that family is said to have Helly number ''k''. The Helly dimension of a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
is one less than the Helly number of the family of metric balls in that space; Helly's theorem implies that the Helly dimension of a Euclidean space equals its dimension as a real
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. The Helly dimension of a subset S of a Euclidean space, such as a polyhedron, is one less than the Helly number of the family of
translates Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
of S. For instance, the Helly dimension of any
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
is 1, even though such a shape may belong to a Euclidean space of much higher dimension. Helly dimension has also been applied to other mathematical objects. For instance defines the Helly dimension of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
(an algebraic structure formed by an invertible and associative binary operation) to be one less than the Helly number of the family of left cosets of the group.


The Helly property

If a family of nonempty sets has an empty intersection, its Helly number must be at least two, so the smallest ''k'' for which the ''k''-Helly property is nontrivial is ''k'' = 2. The 2-Helly property is also known as the Helly property. A 2-Helly family is also known as a Helly family. A
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
in which the closed balls have the 2-Helly property (that is, a space with Helly dimension 1, in the stronger variant of Helly dimension for infinite subcollections) is called
injective In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
or hyperconvex. The existence of the tight span allows any metric space to be embedded isometrically into a space with Helly dimension 1..


The Helly property in hypergraphs

A
hypergraph In mathematics, a hypergraph is a generalization of a Graph (discrete mathematics), graph in which an graph theory, edge can join any number of vertex (graph theory), vertices. In contrast, in an ordinary graph, an edge connects exactly two vert ...
is equivalent to a set-family. In hypergraphs terms, a hypergraph ''H'' = (''V'', ''E'') has the Helly property if for every ''n'' hyperedges e_1,\ldots,e_n in ''E'', if \forall i,j\in e_i \cap e_j \neq\emptyset , then e_1 \cap \cdots \cap e_n \neq\emptyset . For every hypergraph H, the following are equivalent: * ''H'' has the Helly property, and the intersection graph of ''H'' (the simple graph in which the vertices are ''E'' and two elements of ''E'' are linked iff they intersect) is a
perfect graph In graph theory, a perfect graph is a Graph (discrete mathematics), graph in which the Graph coloring, chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic nu ...
. * Every partial hypergraph of ''H'' (i.e., a hypergraph derived from ''H'' by deleting some hyperedges) has the Konig property, i.e., its maximum- matching size equals its minimum- transversal size. * Every partial hypergraph of ''H'' has the property that its maximum degree equals its minimum edge coloring number.


References

{{reflist Families of sets Hypergraphs Discrete geometry