Helium Compound
   HOME

TheInfoList



OR:

Helium (from ) is a
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
He and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
2. It is a colorless, odorless, non-toxic, inert,
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
gas Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
and the first in the
noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
group in the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
. Its
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
is the lowest among all the elements, and it does not have a
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
at standard pressures. It is the second-lightest and second-most abundant element in the observable
universe The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, after
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
. It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
and
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, because of the very high
nuclear binding energy Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is alwa ...
(per
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
) of
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
and
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. The most common isotope of helium in the universe is helium-4, the vast majority of which was formed during the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
. Large amounts of new helium are created by nuclear fusion of hydrogen in
stars A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of ...
. Helium was first detected as an unknown, yellow
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
signature in sunlight during a solar eclipse in 1868 by
Georges Rayet Georges-Antoine-Pons Rayet (12 December 1839 – 14 June 1906) was a French astronomer. He was born in Bordeaux, France. He began working at the Paris Observatory in 1863. He worked on meteorology in addition to astronomy. He specialized ...
, Captain C. T. Haig, Norman R. Pogson, and Lieutenant John Herschel, and was subsequently confirmed by French astronomer
Jules Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
. Janssen is often jointly credited with detecting the element, along with
Norman Lockyer Sir Joseph Norman Lockyer (17 May 1836 – 16 August 1920) was an English scientist and astronomer. Along with the French scientist Pierre Janssen, he is credited with discovering the gas helium. Lockyer also is remembered for being the fo ...
. Janssen recorded the helium spectral line during the solar eclipse of 1868, while Lockyer observed it from Britain. However, only Lockyer proposed that the line was due to a new element, which he named after the Sun. The formal discovery of the element was made in
1895 Events January * January 5 – Dreyfus affair: French officer Alfred Dreyfus is stripped of his army rank and sentenced to life imprisonment on Devil's Island (off French Guiana) on what is much later admitted to be a false charge of tr ...
by chemists
Sir William Ramsay Sir William Ramsay (; 2 October 1852 – 23 July 1916) was a Scottish chemist who discovered the noble gases and received the Nobel Prize in Chemistry in 1904 "in recognition of his services in the discovery of the inert gaseous element ...
,
Per Teodor Cleve Per Teodor Cleve (10 February 1840 – 18 June 1905) was a Swedish chemist, biologist, mineralogist and oceanographer. He is best known for his discovery of the chemical elements holmium and thulium. Born in Stockholm in 1840, Cleve earned ...
, and Nils Abraham Langlet, who found helium emanating from the
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
ore
cleveite Cleveite is an impure radioactive variety of uraninite containing uranium, found in Norway. It has the composition UO2 with about 10% of the uranium substituted by rare-earth elements. It was named after Swedish chemist Per Teodor Cleve. Cleve ...
, which is now not regarded as a separate mineral species, but as a variety of
uraninite Uraninite, also known as pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2 but because of oxidation typically contains variable proportions of U3O8. Radioactive decay of the uranium c ...
. In 1903, large reserves of helium were found in
natural gas field A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the prese ...
s in parts of the United States, by far the largest supplier of the gas today. Liquid helium is used in
cryogenics In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a universa ...
(its largest single use, consuming about a quarter of production), and in the
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or Phase transition, phase change. Temperature lowering achieved by any other means may also be called cooling. The Heat transfer, transfer of Internal energy, thermal energ ...
of
superconducting magnet A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much ...
s, with its main commercial application in
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and rad ...
scanners. Helium's other industrial uses—as a pressurizing and purge gas, as a protective atmosphere for
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a joining of the metals. It is a type of welding that uses a welding power ...
, and in processes such as growing
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s to make
silicon wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The ...
s—account for half of the gas produced. A small but well-known use is as a
lifting gas A lifting gas or lighter-than-air gas is a gas that has a density lower than normal atmospheric gases and rises above them as a result, making it useful in lifting lighter-than-air aircraft. Only certain lighter-than-air gases are suitable as lift ...
in
balloon A balloon is a flexible membrane bag that can be inflated with a gas, such as helium, hydrogen, nitrous oxide, oxygen, or air. For special purposes, balloons can be filled with smoke, liquid water, granular media (e.g. sand, flour or rice), ...
s and
airship An airship, dirigible balloon or dirigible is a type of aerostat (lighter-than-air) aircraft that can navigate through the air flying powered aircraft, under its own power. Aerostats use buoyancy from a lifting gas that is less dense than the ...
s. As with any gas whose density differs from that of air, inhaling a small volume of helium temporarily changes the timbre and quality of the
human voice The human voice consists of sound Voice production, made by a human being using the vocal tract, including Speech, talking, singing, Laughter, laughing, crying, screaming, shouting, humming or yelling. The human voice frequency is specifically ...
. In scientific research, the behavior of the two fluid phases of helium-4 (helium I and helium II) is important to researchers studying
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
(in particular the property of
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
) and to those looking at the phenomena, such as
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
, produced in
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
near
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
. On Earth, it is relatively rare—5.2 ppm by volume in the
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
. Most terrestrial helium present today is created by the natural
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
of heavy radioactive elements (
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
and uranium, although there are other examples), as the
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s emitted by such decays consist of helium-4 nuclei. This
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
helium is trapped with
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
in concentrations as great as 7% by volume, from which it is extracted commercially by a low-temperature separation process called
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
. Terrestrial helium is a non-renewable resource because once released into the atmosphere, it promptly escapes into space. Its supply is thought to be rapidly diminishing. However, some studies suggest that helium produced deep in the Earth by radioactive decay can collect in natural gas reserves in larger-than-expected quantities, in some cases having been released by volcanic activity.


History


Scientific discoveries

The first evidence of helium was observed on August 18, 1868, as a bright yellow line with a
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of 587.49 nanometers in the
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of the
chromosphere A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (''khrôma'') 'color' and σφαῖρα (''sphaîra'') 'sphere') is the second layer of a Stellar atmosphere, star's atmosphere, located above the photosphere and below t ...
of the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. The line was detected by French astronomer
Jules Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
during a total solar eclipse in
Guntur Guntur (), natively spelt as Gunturu, is a city in the States and union territories of India, Indian state of Andhra Pradesh and the administrative headquarters of Guntur district. The city is part of the Andhra Pradesh Capital Region and is lo ...
, India. This line was initially assumed to be
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
. On October 20 of the same year, English astronomer
Norman Lockyer Sir Joseph Norman Lockyer (17 May 1836 – 16 August 1920) was an English scientist and astronomer. Along with the French scientist Pierre Janssen, he is credited with discovering the gas helium. Lockyer also is remembered for being the fo ...
observed a yellow line in the solar spectrum, which he named the D3 because it was near the known D1 and D2
Fraunhofer line The Fraunhofer lines are a set of spectral absorption lines. They are dark absorption lines, seen in the optical spectrum of the Sun, and are formed when atoms in the solar atmosphere absorb light being emitted by the solar photosphere. The ...
s of sodium. He concluded that it was caused by an element in the Sun unknown on Earth. Lockyer named the element with the Greek word for the Sun, ἥλιος (''
helios In ancient Greek religion and Greek mythology, mythology, Helios (; ; Homeric Greek: ) is the god who personification, personifies the Sun. His name is also Latinized as Helius, and he is often given the epithets Hyperion ("the one above") an ...
''). It is sometimes said that English chemist
Edward Frankland Sir Edward Frankland, (18 January 18259 August 1899) was an English chemist. He was one of the originators of organometallic chemistry and introduced the concept of combining power or valence. An expert in water quality and analysis, he was ...
was also involved in the naming, but this is unlikely as he doubted the existence of this new element. The ending "-ium" is unusual, as it normally applies only to metallic elements; probably Lockyer, being an astronomer, was unaware of the chemical conventions. In 1881, Italian physicist
Luigi Palmieri Luigi Palmieri (22 April 1807 – 9 September 1896) was an Italian physicist and meteorologist. He was famous for his scientific studies of the eruptions of Mount Vesuvius, for his researches on earthquakes and meteorological phenomena and for i ...
detected helium on Earth for the first time through its D3 spectral line, when he analyzed a material that had been sublimated during a recent eruption of
Mount Vesuvius Mount Vesuvius ( ) is a Somma volcano, somma–stratovolcano located on the Gulf of Naples in Campania, Italy, about east of Naples and a short distance from the shore. It is one of several volcanoes forming the Campanian volcanic arc. Vesuv ...
. On March 26, 1895, Scottish chemist
Sir William Ramsay Sir William Ramsay (; 2 October 1852 – 23 July 1916) was a Scottish chemist who discovered the noble gases and received the Nobel Prize in Chemistry in 1904 "in recognition of his services in the discovery of the inert gaseous element ...
isolated helium on Earth by treating the mineral cleveite (a variety of uraninite with at least 10%
rare-earth elements The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set of ...
) with mineral
acid An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
s. Ramsay was looking for
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
but, after separating
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
from the gas, liberated by
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (English in the Commonwealth of Nations, Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, ...
, he noticed a bright yellow line that matched the D3 line observed in the spectrum of the Sun. These samples were identified as helium by Lockyer and British physicist
William Crookes Sir William Crookes (; 17 June 1832 – 4 April 1919) was an English chemist and physicist who attended the Royal College of Chemistry, now part of Imperial College London, and worked on spectroscopy. He was a pioneer of vacuum tubes, inventing ...
. It was independently isolated from cleveite in the same year by chemists
Per Teodor Cleve Per Teodor Cleve (10 February 1840 – 18 June 1905) was a Swedish chemist, biologist, mineralogist and oceanographer. He is best known for his discovery of the chemical elements holmium and thulium. Born in Stockholm in 1840, Cleve earned ...
and
Abraham Langlet Nils Abraham Langlet (9 July 1868 – 30 March 1936; known by his second given name) was a Swedish chemist. Biography Langlet was born in Södertälje, Sweden. He was the son of architect Emil Victor Langlet (1824–1898) and his wife, author Cl ...
in
Uppsala Uppsala ( ; ; archaically spelled ''Upsala'') is the capital of Uppsala County and the List of urban areas in Sweden by population, fourth-largest city in Sweden, after Stockholm, Gothenburg, and Malmö. It had 177,074 inhabitants in 2019. Loc ...
, Sweden, who collected enough of the gas to accurately determine its
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
. Helium was also isolated by American geochemist
William Francis Hillebrand William Francis Hillebrand (December 12, 1853 – February 7, 1925) was an American chemist. Biography He was the son of the renowned botanist William Hillebrand. He studied at Cornell University and then in Germany at the University of Heidelb ...
prior to Ramsay's discovery, when he noticed unusual spectral lines while testing a sample of the mineral uraninite. Hillebrand, however, attributed the lines to
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
. His letter of congratulations to Ramsay offers an interesting case of discovery, and near-discovery, in science. In 1907,
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
and Thomas Royds demonstrated that
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s are helium nuclei by allowing the particles to penetrate the thin glass wall of an
evacuated tube A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and sol ...
, then creating a discharge in the tube, to study the spectrum of the new gas inside. In 1908, helium was first liquefied by Dutch physicist
Heike Kamerlingh Onnes Heike Kamerlingh Onnes (; 21 September 1853 – 21 February 1926) was a Dutch Experimental physics, experimental physicist. After studying in Groningen and Heidelberg, he became Professor of Experimental Physics at Leiden University, where he tau ...
by cooling the gas to less than . He tried to solidify it by further reducing the temperature but failed, because helium does not solidify at atmospheric pressure. Onnes' student
Willem Hendrik Keesom Willem Hendrik Keesom () (21 June 1876, Texel – 3 March 1956, Leiden) was a Dutch physicist who, in 1926, invented a method to freeze liquid helium. He also developed the first mathematical description of dipole–dipole interactions in 1 ...
was eventually able to solidify 1 cm3 of helium in 1926 by applying additional external pressure. In 1913,
Niels Bohr Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
published his "trilogy" on atomic structure that included a reconsideration of the Pickering–Fowler series as central evidence in support of his model of the atom. This series is named for
Edward Charles Pickering Edward Charles Pickering (July 19, 1846 – February 3, 1919) was an American astronomer and physicist and the older brother of William Henry Pickering. Along with Carl Vogel, Pickering discovered the first spectroscopic binary stars. He wrote ' ...
, who in 1896 published observations of previously unknown lines in the spectrum of the star
ζ Puppis Zeta Puppis (ζ Puppis, abbreviated Zeta Pup, ζ Pup), formally named Naos , is the brightest star in the constellation of Puppis. The spectral class of O4 means this is one of the hottest, and most luminous, stars vi ...
(these are now known to occur with Wolf–Rayet and other hot stars). Pickering attributed the observation (lines at 4551, 5411, and 10123  Å) to a new form of hydrogen with half-integer transition levels. In 1912,
Alfred Fowler Alfred Fowler, CBE FRS (22 March 1868, in Yorkshire – 24 June 1940) was an English astronomer and spectroscopist. Early life and career He was born in Wilsden on the outskirts of Bradford, Yorkshire and educated at London's Norma ...
managed to produce similar lines from a hydrogen-helium mixture, and supported Pickering's conclusion as to their origin. Bohr's model does not allow for half-integer transitions (nor does quantum mechanics) and Bohr concluded that Pickering and Fowler were wrong, and instead assigned these spectral lines to ionised helium, He+. Fowler was initially skeptical but was ultimately convinced that Bohr was correct, and by 1915 "spectroscopists had transferred he Pickering–Fowler seriesdefinitively rom hydrogento helium." Bohr's theoretical work on the Pickering series had demonstrated the need for "a re-examination of problems that seemed already to have been solved within classical theories" and provided important confirmation for his atomic theory. In 1938, Russian physicist Pyotr Leonidovich Kapitsa discovered that
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
has almost no
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
at temperatures near
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
, a phenomenon now called
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
. This phenomenon is related to
Bose–Einstein condensation Bose–Einstein may refer to: * Bose–Einstein condensate, a phase of matter in quantum mechanics ** Bose–Einstein condensation (network theory), the application of this model in network theory ** Bose–Einstein condensation of polaritons ** B ...
. In 1972, the same phenomenon was observed in
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
, but at temperatures much closer to absolute zero, by American physicists Douglas D. Osheroff, David M. Lee, and Robert C. Richardson. The phenomenon in helium-3 is thought to be related to pairing of helium-3
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s to make
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s, in analogy to
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
of electrons producing
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
. In 1961, Vignos and Fairbank reported the existence of a different phase of solid helium-4, designated the gamma-phase. It exists for a narrow range of pressure between 1.45 and 1.78 K.


Extraction and use

After an oil drilling operation in 1903 in
Dexter, Kansas Dexter is a city in Cowley County, Kansas, United States. As of the 2020 census, the population of the city was 224. History The first post office at Dexter was established in July, 1870. Platted in 1875, Dexter is named for a trotting hor ...
produced a gas geyser that would not burn, Kansas state geologist
Erasmus Haworth Erasmus Haworth (1855–1932) was an American geologist. Born on a farm near Indianola, Iowa, he graduated from the University of Kansas with a Bachelor of Science degree in 1881 and received a master's degree there in 1884. He received his doct ...
collected samples of the escaping gas and took them back to the
University of Kansas The University of Kansas (KU) is a public research university with its main campus in Lawrence, Kansas, United States. Two branch campuses are in the Kansas City metropolitan area on the Kansas side: the university's medical school and hospital ...
at Lawrence where, with the help of chemists Hamilton Cady and David McFarland, he discovered that the gas consisted of, by volume, 72% nitrogen, 15%
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
(a
combustible A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort a ...
percentage only with sufficient oxygen), 1% hydrogen, and 12% an unidentifiable gas. With further analysis, Cady and McFarland discovered that 1.84% of the gas sample was helium. This showed that despite its overall rarity on Earth, helium was concentrated in large quantities under the American Great Plains, available for extraction as a byproduct of
natural gas Natural gas (also fossil gas, methane gas, and gas) is a naturally occurring compound of gaseous hydrocarbons, primarily methane (95%), small amounts of higher alkanes, and traces of carbon dioxide and nitrogen, hydrogen sulfide and helium ...
. Following a suggestion by Sir Richard Threlfall, the
United States Navy The United States Navy (USN) is the naval warfare, maritime military branch, service branch of the United States Department of Defense. It is the world's most powerful navy with the largest Displacement (ship), displacement, at 4.5 millio ...
sponsored three small experimental helium plants during World War I. The goal was to supply
barrage balloon A barrage balloon is a type of airborne barrage, a large uncrewed tethered balloon used to defend ground targets against aircraft attack, by raising aloft steel cables which pose a severe risk of collision with hostile aircraft, making the atta ...
s with the non-flammable, lighter-than-air gas. A total of of 92% helium was produced in the program even though less than a cubic meter of the gas had previously been obtained. Some of this gas was used in the world's first helium-filled airship, the U.S. Navy's
C-class blimp The C-class blimp was a patrol airship developed by the US Navy near the end of World War I, a systematic improvement upon the B class blimp, B-type which was suitable for training, but of limited value for patrol work. Larger than the B-class, th ...
C-7, which flew its maiden voyage from
Hampton Roads, Virginia Hampton Roads is a body of water in the United States that serves as a wide channel for the James, Nansemond, and Elizabeth rivers between Old Point Comfort and Sewell's Point near where the Chesapeake Bay flows into the Atlantic Ocean. ...
, to
Bolling Field The origins of the surname Bolling: English language, English: from a nickname for someone with close-cropped hair or a large head, Middle English bolling "pollard", or for a heavy drinker, from Middle English bolling "excessive drinking". German ...
in Washington, D.C., on December 1, 1921, nearly two years before the Navy's first ''rigid'' helium-filled airship, the
Naval Aircraft Factory The Naval Aircraft Factory (NAF) was established by the United States Navy in 1918 in Philadelphia, Pennsylvania. It was created to help solve aircraft supply issues which the United States Department of the Navy, Navy Department faced upon the ...
-built USS ''Shenandoah'', flew in September 1923. Although the extraction process using low-temperature
gas liquefaction Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, usin ...
was not developed in time to be significant during World War I, production continued. Helium was primarily used as a
lifting gas A lifting gas or lighter-than-air gas is a gas that has a density lower than normal atmospheric gases and rises above them as a result, making it useful in lifting lighter-than-air aircraft. Only certain lighter-than-air gases are suitable as lift ...
in lighter-than-air craft. During World War II, the demand increased for helium for lifting gas and for shielded arc
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
. The
helium mass spectrometer A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the Gaseous diffusion, gas diffusion process of enri ...
was also vital in the atomic bomb
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
. The
government of the United States The Federal Government of the United States of America (U.S. federal government or U.S. government) is the national government of the United States. The U.S. federal government is composed of three distinct branches: legislative, execut ...
set up the National Helium Reserve in 1925 at
Amarillo, Texas Amarillo ( ; Spanish language, Spanish for "yellow") is a city in the U.S. state of Texas and the county seat of Potter County, Texas, Potter County, though most of the southern half of the city extends into Randall County, Texas, Randall County ...
, with the goal of supplying military
airship An airship, dirigible balloon or dirigible is a type of aerostat (lighter-than-air) aircraft that can navigate through the air flying powered aircraft, under its own power. Aerostats use buoyancy from a lifting gas that is less dense than the ...
s in time of war and commercial airships in peacetime. Because of the
Helium Act of 1925 Helium Act of 1925 is a United States Statutes at Large, United States statute drafted for the purpose of conservation, exploration, and procurement of helium gas. As since amended, it is currently codified beginning at section 167 of Title 50 of ...
, which banned the export of scarce helium on which the US then had a production monopoly, together with the prohibitive cost of the gas, German
Zeppelin A Zeppelin is a type of rigid airship named after the German inventor Ferdinand von Zeppelin () who pioneered rigid airship development at the beginning of the 20th century. Zeppelin's notions were first formulated in 1874Eckener 1938, pp. 155 ...
s were forced to use hydrogen as lifting gas, which would gain infamy in the
Hindenburg disaster The ''Hindenburg'' disaster was an airship accident that occurred on May 6, 1937, in Manchester Township, New Jersey, Manchester Township, New Jersey, United States. The LZ 129 Hindenburg, LZ 129 ''Hindenburg'' (; Aircraft registration, Regi ...
. The helium market after World War II was depressed but the reserve was expanded in the 1950s to ensure a supply of
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
as a coolant to create oxygen/hydrogen
rocket fuel Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overvi ...
(among other uses) during the
Space Race The Space Race (, ) was a 20th-century competition between the Cold War rivals, the United States and the Soviet Union, to achieve superior spaceflight capability. It had its origins in the ballistic missile-based nuclear arms race between t ...
and
Cold War The Cold War was a period of global Geopolitics, geopolitical rivalry between the United States (US) and the Soviet Union (USSR) and their respective allies, the capitalist Western Bloc and communist Eastern Bloc, which lasted from 1947 unt ...
. Helium use in the United States in 1965 was more than eight times the peak wartime consumption. After the Helium Acts Amendments of 1960 (Public Law 86–777), the U.S. Bureau of Mines arranged for five private plants to recover helium from natural gas. For this helium conservation program, the Bureau built a pipeline from Bushton, Kansas, to connect those plants with the government's partially depleted Cliffside gas field near Amarillo, Texas. This helium-nitrogen mixture was injected and stored in the Cliffside gas field until needed, at which time it was further purified. By 1995, a billion cubic meters of the gas had been collected and the reserve was US$1.4 billion in debt, prompting the
Congress of the United States The United States Congress is the legislative branch of the federal government of the United States. It is a bicameral legislature, including a lower body, the U.S. House of Representatives, and an upper body, the U.S. Senate. They both ...
in 1996 to discontinue the reserve.Stwertka, Albert (1998). ''Guide to the Elements: Revised Edition''. New York; Oxford University Press, p. 24. The resulting
Helium Privatization Act of 1996 The Helium Privatization Act of 1996 is a United States statute that ordered the US government to sell much of the National Helium Reserve. The United States 104th Congressional session passed the Act of Congress presenting the legislation to th ...
(Public Law 104–273) directed the
United States Department of the Interior The United States Department of the Interior (DOI) is an United States federal executive departments, executive department of the Federal government of the United States, U.S. federal government responsible for the management and conservation ...
to empty the reserve, with sales starting by 2005. Helium produced between 1930 and 1945 was about 98.3% pure (2% nitrogen), which was adequate for airships. In 1945, a small amount of 99.9% helium was produced for welding use. By 1949, commercial quantities of Grade A 99.95% helium were available. For many years, the United States produced more than 90% of commercially usable helium in the world, while extraction plants in Canada, Poland, Russia, and other nations produced the remainder. In the mid-1990s, a new plant in
Arzew Arzew or Arzeu (, ) is a seaport, port city in Algeria, 25 miles (40 km) from Oran. It is the capital of Arzew District, Oran Province. History Antiquity Like the rest of the Maghreb, the site of modern-day Arzew was originally in ...
, Algeria, producing began operation, with enough production to cover all of Europe's demand. Meanwhile, by 2000, the consumption of helium within the U.S. had risen to more than 15 million kg per year. In 2004–2006, additional plants in
Ras Laffan Ras Laffan Industrial City () is a Qatari industrial hub located north of Doha. It is administered by QatarEnergy. Ras Laffan Industrial City is Qatar's main site for production of liquefied natural gas and gas-to-liquid. It hosts among others O ...
,
Qatar Qatar, officially the State of Qatar, is a country in West Asia. It occupies the Geography of Qatar, Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it shares Qatar–Saudi Arabia border, its sole land b ...
, and
Skikda Skikda (; formerly Philippeville from 1838 to 1962 and Rusicade in ancient times) is a city in northeastern Algeria and a port on the Mediterranean. It is the capital of Skikda Province and Skikda District. History The Phoenicians and Carthagi ...
, Algeria were built. Algeria quickly became the second leading producer of helium. Through this time, both helium consumption and the costs of producing helium increased. From 2002 to 2007 helium prices doubled. , the United States National Helium Reserve accounted for 30 percent of the world's helium. The reserve was expected to run out of helium in 2018. Despite that, a proposed bill in the
United States Senate The United States Senate is a chamber of the Bicameralism, bicameral United States Congress; it is the upper house, with the United States House of Representatives, U.S. House of Representatives being the lower house. Together, the Senate and ...
would allow the reserve to continue to sell the gas. Other large reserves were in the
Hugoton Hugoton is a city in and the county seat of Stevens County, Kansas, United States. As of the 2020 census, the population of the city was 3,747. History Settlers from McPherson established a settlement in what was then west-central Seward ...
in
Kansas Kansas ( ) is a landlocked U.S. state, state in the Midwestern United States, Midwestern region of the United States. It borders Nebraska to the north; Missouri to the east; Oklahoma to the south; and Colorado to the west. Kansas is named a ...
, United States, and nearby gas fields of Kansas and the
panhandles A salient, panhandle, or bootheel is an elongated protrusion of a geopolitical entity, such as a subnational entity or a sovereign state. While similar to a peninsula in shape, a salient is most often not surrounded by water on three sides. Ins ...
of
Texas Texas ( , ; or ) is the most populous U.S. state, state in the South Central United States, South Central region of the United States. It borders Louisiana to the east, Arkansas to the northeast, Oklahoma to the north, New Mexico to the we ...
and
Oklahoma Oklahoma ( ; Choctaw language, Choctaw: , ) is a landlocked U.S. state, state in the South Central United States, South Central region of the United States. It borders Texas to the south and west, Kansas to the north, Missouri to the northea ...
. New helium plants were scheduled to open in 2012 in
Qatar Qatar, officially the State of Qatar, is a country in West Asia. It occupies the Geography of Qatar, Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it shares Qatar–Saudi Arabia border, its sole land b ...
, Russia, and the US state of
Wyoming Wyoming ( ) is a landlocked U.S. state, state in the Mountain states, Mountain West subregion of the Western United States, Western United States. It borders Montana to the north and northwest, South Dakota and Nebraska to the east, Idaho t ...
, but they were not expected to ease the shortage. In 2013, Qatar started up the world's largest helium unit, although the
2017 Qatar diplomatic crisis The Qatar diplomatic crisis was a high-profile deterioration of relations between Qatar and the Arab League between 2017 and 2021. It began when Saudi Arabia, the United Arab Emirates, Bahrain, and Egypt simultaneously severed their bilateral relat ...
severely affected helium production there. 2014 was widely acknowledged to be a year of over-supply in the helium business, following years of renowned shortages. Nasdaq reported (2015) that for
Air Products Air Products and Chemicals, Inc. is a U.S.-based international corporation whose principal business is selling gases and chemicals for industrial use. Air Products is headquartered in Trexlertown, Pennsylvania, in the Lehigh Valley region of east ...
, an international corporation that sells gases for industrial use, helium volumes remain under economic pressure due to feedstock supply constraints.


Characteristics


Atom


In quantum mechanics

In the perspective of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, helium is the second simplest
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
to model, following the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
. Helium is composed of two electrons in
atomic orbital In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
s surrounding a nucleus containing two protons and (usually) two neutrons. As in Newtonian mechanics, no system that consists of more than two particles can be solved with an exact analytical mathematical approach (see 3-body problem) and helium is no exception. Thus, numerical mathematical methods are required, even to solve the system of one nucleus and two electrons. Such
computational chemistry Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of mol ...
methods have been used to create a quantum mechanical picture of helium electron binding which is accurate to within < 2% of the correct value, in a few computational steps. Such models show that each electron in helium partly screens the nucleus from the other, so that the
effective nuclear charge In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges (e) an electron experiences by the nucleus. It is denoted by ''Z''eff. The term "effective" is used because the shi ...
''Z''eff which each electron sees is about 1.69 units, not the 2 charges of a classic "bare" helium nucleus.


Related stability of the helium-4 nucleus and electron shell

The nucleus of the helium-4 atom is identical with an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
. High-energy electron-scattering experiments show its charge to decrease exponentially from a maximum at a central point, exactly as does the charge density of helium's own
electron cloud In quantum mechanics, an atomic orbital () is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calc ...
. This symmetry reflects similar underlying physics: the pair of neutrons and the pair of protons in helium's nucleus obey the same quantum mechanical rules as do helium's pair of electrons (although the nuclear particles are subject to a different nuclear binding potential), so that all these
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s fully occupy 1s orbitals in pairs, none of them possessing orbital angular momentum, and each cancelling the other's intrinsic spin. This arrangement is thus energetically extremely stable for all these particles and has
astrophysical Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
implications. Namely, adding another particle – proton, neutron, or alpha particle – would consume rather than release energy; all systems with
mass number The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
5, as well as
beryllium-8 Beryllium-8 (8Be, Be-8) is a radionuclide with 4 neutrons and 4 protons. It is an unbound resonance and nominally an isotope of beryllium. It has a half-life on the order of 8.19 seconds, decaying into two alpha particles. This has importa ...
(comprising two alpha particles), are unbound. For example, the stability and low energy of the electron cloud state in helium accounts for the element's chemical inertness, and also the lack of interaction of helium atoms with each other, producing the lowest melting and boiling points of all the elements. In a similar way, the particular energetic stability of the helium-4 nucleus, produced by similar effects, accounts for the ease of helium-4 production in atomic reactions that involve either heavy-particle emission or fusion. Some stable helium-3 (two protons and one neutron) is produced in fusion reactions from hydrogen, though its estimated abundance in the universe is about relative to helium-4. The unusual stability of the helium-4 nucleus is also important cosmologically: it explains the fact that in the first few minutes after the
Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
, as the "soup" of free protons and neutrons which had initially been created in about 6:1 ratio cooled to the point that nuclear binding was possible, almost all first compound atomic nuclei to form were helium-4 nuclei. Owing to the relatively tight binding of helium-4 nuclei, its production consumed nearly all of the free neutrons in a few minutes, before they could beta-decay, and thus few neutrons were available to form heavier atoms such as lithium, beryllium, or boron. Helium-4 nuclear binding per nucleon is stronger than in any of these elements (see
nucleogenesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
and
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
) and thus, once helium had been formed, no energetic drive was available to make elements 3, 4 and 5. It is barely energetically favorable for helium to fuse into the next element with a lower energy per
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
, carbon. However, due to the short lifetime of the intermediate beryllium-8, this process requires three helium nuclei striking each other nearly simultaneously (see
triple-alpha process The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. In stars Helium accumulates in the cores of stars as a result of the proton–proton chain reaction a ...
). There was thus no time for significant carbon to be formed in the few minutes after the Big Bang, before the early expanding universe cooled to the temperature and pressure point where helium fusion to carbon was no longer possible. This left the early universe with a very similar ratio of hydrogen/helium as is observed today (3 parts hydrogen to 1 part helium-4 by mass), with nearly all the neutrons in the universe trapped in helium-4. All heavier elements (including those necessary for rocky planets like the Earth, and for carbon-based or other life) have thus been created since the Big Bang in stars which were hot enough to fuse helium itself. All elements other than hydrogen and helium today account for only 2% of the mass of atomic matter in the universe. Helium-4, by contrast, comprises about 24% of the mass of the universe's ordinary matter—nearly all the ordinary matter that is not hydrogen.


Gas and plasma phases

Helium is the second least reactive noble gas after
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
, and thus the second least reactive of all elements. It is
chemically inert In chemistry, the term chemically inert is used to describe a substance that is not chemically reactive. From a thermodynamic perspective, a substance is inert, or nonlabile, if it is thermodynamically unstable (negative standard Gibbs free en ...
and monatomic in all standard conditions. Because of helium's relatively low molar (atomic) mass, its
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
,
specific heat In thermodynamics, the specific heat capacity (symbol ) of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat ...
, and
sound speed The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At , the speed of sound in air is about , or in or one m ...
in the gas phase are all greater than any other gas except
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
. For these reasons and the small size of helium monatomic molecules, helium diffuses through solids at a rate three times that of air and around 65% that of hydrogen. Helium is the least water-
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
monatomic gas, and one of the least water-soluble of any gas ( CF4, SF6, and C4F8 have lower mole fraction solubilities: 0.3802, 0.4394, and 0.2372 x2/10−5, respectively, versus helium's 0.70797 x2/10−5), and helium's
index of refraction In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
is closer to unity than that of any other gas. Helium has a negative Joule–Thomson coefficient at normal ambient temperatures, meaning it heats up when allowed to freely expand. Only below its Joule–Thomson inversion temperature (of about 32 to 50 K at 1 atmosphere) does it cool upon free expansion. Once precooled below this temperature, helium can be liquefied through expansion cooling. Most extraterrestrial helium is plasma in stars, with properties quite different from those of atomic helium. In a plasma, helium's electrons are not bound to its nucleus, resulting in very high electrical conductivity, even when the gas is only partially ionized. The charged particles are highly influenced by magnetic and electric fields. For example, in the
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
together with ionized hydrogen, the particles interact with the Earth's
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
, giving rise to
Birkeland current A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, th ...
s and the
aurora An aurora ( aurorae or auroras), also commonly known as the northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in Earth's sky, predominantly observed in high-latitude regions (around the Arc ...
.


Liquid phase

Helium liquifies when cooled below 4.2 K at atmospheric pressure. Unlike any other element, however, helium remains liquid down to a temperature of
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
. This is a direct effect of quantum mechanics: specifically, the
zero point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pr ...
of the system is too high to allow freezing. Pressures above about 25 atmospheres are required to freeze it. There are two liquid phases: Helium I is a conventional liquid, and Helium II, which occurs at a lower temperature, is a
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
.


Helium I

Below its
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
of and above the
lambda point The lambda point is the temperature at which normal fluid helium (helium I) makes the transition to superfluid state ( helium II). At pressure of 1 atmosphere, the transition occurs at approximately 2.17 K. The lowest pressure at which He-I and H ...
of , the
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
helium-4 exists in a normal colorless liquid state, called ''helium I''. Like other
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
liquids, helium I boils when it is heated and contracts when its temperature is lowered. Below the lambda point, however, helium does not boil, and it expands as the temperature is lowered further. Helium I has a gas-like
index of refraction In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
of 1.026 which makes its surface so hard to see that floats of
Styrofoam Styrofoam is a brand of closed-cell extruded polystyrene foam (XPS), manufactured to provide continuous building insulation board used in walls, roofs, and foundations as thermal insulation and as a water barrier. This material is light blue in ...
are often used to show where the surface is. This colorless liquid has a very low
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
and a density of 0.145–0.125 g/mL (between about 0 and 4 K), which is only one-fourth the value expected from
classical physics Classical physics refers to physics theories that are non-quantum or both non-quantum and non-relativistic, depending on the context. In historical discussions, ''classical physics'' refers to pre-1900 physics, while '' modern physics'' refers to ...
.
Quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
is needed to explain this property and thus both states of liquid helium (helium I and helium II) are called ''quantum fluids'', meaning they display atomic properties on a macroscopic scale. This may be an effect of its boiling point being so close to absolute zero, preventing random molecular motion (
thermal energy The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including: * Internal energy: The energy contained within a body of matter or radiation, excluding the potential en ...
) from masking the atomic properties.


Helium II

Liquid helium below its lambda point (called ''helium II'') exhibits very unusual characteristics. Due to its high
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
, when it boils, it does not bubble but rather evaporates directly from its surface.
Helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
also has a
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
phase, but only at much lower temperatures; as a result, less is known about the properties of the isotope. Helium II is a superfluid, a quantum mechanical state of matter with strange properties. For example, when it flows through capillaries as thin as 10 to 100 nm it has no measurable
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
. However, when measurements were done between two moving discs, a viscosity comparable to that of gaseous helium was observed. Existing theory explains this using the ''two-fluid model'' for helium II. In this model, liquid helium below the lambda point is viewed as containing a proportion of helium atoms in a
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
, which are superfluid and flow with exactly zero viscosity, and a proportion of helium atoms in an excited state, which behave more like an ordinary fluid. In the ''fountain effect'', a chamber is constructed which is connected to a reservoir of helium II by a
sintered Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, pla ...
disc through which superfluid helium leaks easily but through which non-superfluid helium cannot pass. If the interior of the container is heated, the superfluid helium changes to non-superfluid helium. In order to maintain the equilibrium fraction of superfluid helium, superfluid helium leaks through and increases the pressure, causing liquid to fountain out of the container. The thermal conductivity of helium II is greater than that of any other known substance, a million times that of helium I and several hundred times that of
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
. This is because heat conduction occurs by an exceptional quantum mechanism. Most materials that conduct heat well have a
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
of free electrons which serve to transfer the heat. Helium II has no such valence band but nevertheless conducts heat well. The flow of heat is governed by equations that are similar to the
wave equation The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light ...
used to characterize sound propagation in air. When heat is introduced, it moves at 20 meters per second at 1.8 K through helium II as waves in a phenomenon known as ''
second sound In condensed matter physics, second sound is a quantum mechanical phenomenon in which heat transfer occurs by wave-like motion, rather than by the more usual mechanism of diffusion. Its presence leads to a very high thermal conductivity. It is kno ...
''. Helium II also exhibits a creeping effect. When a surface extends past the level of helium II, the helium II moves along the surface, against the force of
gravity In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
. Helium II will escape from a vessel that is not sealed by creeping along the sides until it reaches a warmer region where it evaporates. It moves in a 30 nm-thick film regardless of surface material. This film is called a Rollin film and is named after the man who first characterized this trait, Bernard V. Rollin. As a result of this creeping behavior and helium II's ability to leak rapidly through tiny openings, it is very difficult to confine. Unless the container is carefully constructed, the helium II will creep along the surfaces and through valves until it reaches somewhere warmer, where it will evaporate. Waves propagating across a Rollin film are governed by the same equation as
gravity wave In fluid dynamics, gravity waves are waves in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the oc ...
s in shallow water, but rather than gravity, the restoring force is the
van der Waals force In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical elec ...
. These waves are known as '' third sound''.


Solid phases

Helium remains liquid down to
absolute zero Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The absolute zero is defined as 0 K on the Kelvin scale, equivalent to −273.15 ° ...
at atmospheric pressure, but it freezes at high pressure. Solid helium requires a temperature of 1–1.5 K (about −272 °C or −457 °F) at about 25 bar (2.5 MPa) of pressure. It is often hard to distinguish solid from liquid helium since the
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
of the two phases are nearly the same. The solid has a sharp
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state of matter, state from solid to liquid. At the melting point the solid and liquid phase (matter), phase exist in Thermodynamic equilib ...
and has a
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line structure, but it is highly
compressible In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
; applying pressure in a laboratory can decrease its volume by more than 30%. With a bulk modulus of about 27 megapascal, MPa it is ~100 times more compressible than water. Solid helium has a density of at 1.15 K and 66 atm; the projected density at 0 K and 25 bar (2.5 MPa) is . At higher temperatures, helium will solidify with sufficient pressure. At room temperature, this requires about 114,000 atm. Helium-4 and helium-3 both form several crystalline solid phases, all requiring at least 25 bar. They both form an α phase, which has a Hexagonal crystal family#Hexagonal close packed, hexagonal close-packed (hcp) crystal structure, a β phase, which is Cubic crystal system, face-centered cubic (fcc), and a γ phase, which is Cubic crystal system, body-centered cubic (bcc).


Isotopes

There are nine known
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of helium of which two,
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
and
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consi ...
, are stable isotope, stable. In the Earth's atmosphere, one atom is for every million that are . Unlike most elements, helium's isotopic abundance varies greatly by origin, due to the different formation processes. The most common isotope, helium-4, is produced on Earth by alpha decay of heavier radioactive elements; the alpha particles that emerge are fully ionized helium-4 nuclei. Helium-4 is an unusually stable nucleus because its
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
s are arranged into Nuclear shell model, complete shells. It was also formed in enormous quantities during Big Bang nucleosynthesis. Helium-3 is present on Earth only in trace amounts. Most of it has been present since Earth's formation, though some falls to Earth trapped in cosmic dust. Trace amounts are also produced by the beta decay of tritium. Rocks from the Earth's crust have isotope ratios varying by as much as a factor of ten, and these ratios can be used to investigate the origin of rocks and the composition of the Earth's Mantle (geology), mantle. is much more abundant in stars as a product of nuclear fusion. Thus in the interstellar medium, the proportion of to is about 100 times higher than on Earth. Extraplanetary material, such as Moon, lunar and asteroid regolith, have trace amounts of helium-3 from being bombarded by
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
s. The Moon's surface contains helium-3 at concentrations on the order of 10 Parts per billion, ppb, much higher than the approximately 5 Parts per trillion, ppt found in the Earth's atmosphere. A number of people, starting with Gerald Kulcinski in 1986, have proposed to explore the Moon, mine lunar regolith, and use the helium-3 for Nuclear fusion, fusion. Liquid helium-4 can be cooled to about using evaporative cooling in a 1-K pot. Similar cooling of helium-3, which has a lower boiling point, can achieve about in a Helium-3#Cryogenics, helium-3 refrigerator. Equal mixtures of liquid and below separate into two immiscible phases due to their dissimilarity (they follow different quantum statistics: helium-4 atoms are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s while helium-3 atoms are
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s). Dilution refrigerators use this immiscibility to achieve temperatures of a few millikelvins. It is possible to produce exotic helium isotopes, which rapidly decay into other substances. The shortest-lived heavy helium isotope is the nuclear drip line, unbound helium-10 with a half-life of . Helium-6 decays by emitting a beta particle and has a half-life of 0.8 second. Helium-7 and helium-8 are created in certain nuclear reactions. Helium-6 and helium-8 are known to exhibit a nuclear halo.


Properties

Table of thermal and physical properties of helium gas at atmospheric pressure:


Compounds

Helium has a Valence (chemistry), valence of zero and is chemically unreactive under all normal conditions. It is an electrical insulator unless ionized. As with the other noble gases, helium has metastable energy levels that allow it to remain ionized in an electrical discharge with a voltage below its ionization potential. Helium can form unstable compound (chemistry), compounds, known as excimers, with tungsten, iodine, fluorine, sulfur, and phosphorus when it is subjected to a glow discharge, to electron bombardment, or reduced to Plasma physics, plasma by other means. The molecular compounds HeNe, HgHe10, and WHe2, and the molecular ions , , , and have been created this way. HeH+ is also stable in its ground state but is extremely reactive—it is the strongest Brønsted–Lowry acid–base theory, Brønsted acid known, and therefore can exist only in isolation, as it will protonate any molecule or counteranion it contacts. This technique has also produced the neutral molecule He2, which has a large number of spectral band, band systems, and HgHe, which is apparently held together only by polarization forces. Van der Waals compounds of helium can also be formed with cryogenic helium gas and atoms of some other substance, such as LiHe and dihelium, He2. Theoretically, other true compounds may be possible, such as helium fluorohydride (HHeF), which would be analogous to Argon fluorohydride, HArF, discovered in 2000. Calculations show that two new compounds containing a helium-oxygen bond could be stable. Two new molecular species, predicted using theory, CsFHeO and N(CH3)4FHeO, are derivatives of a metastable FHeO anion first theorized in 2005 by a group from Taiwan. Helium atoms have been inserted into the hollow carbon cage molecules (the fullerenes) by heating under high pressure. The endohedral fullerene, endohedral fullerene molecules formed are stable at high temperatures. When chemical derivatives of these fullerenes are formed, the helium stays inside. If
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
is used, it can be readily observed by helium nuclear magnetic resonance spectroscopy. Many fullerenes containing helium-3 have been reported. Although the helium atoms are not attached by covalent or ionic bonds, these substances have distinct properties and a definite composition, like all stoichiometric chemical compounds. Under high pressures helium can form compounds with various other elements. Helium-nitrogen clathrate (He(N2)11) crystals have been grown at room temperature at pressures ca. 10 GPa in a diamond anvil cell. The Insulator (electricity), insulating electride Disodium helide, Na2He has been shown to be thermodynamically stable at pressures above 113 GPa. It has a fluorite structure.


Occurrence and production


Natural abundance

Although it is rare on Earth, helium is the second most abundant element in the known Universe, constituting 23% of its baryonic mass. Only hydrogen is more abundant. The vast majority of helium was formed by Big Bang nucleosynthesis one to three minutes after the Big Bang. As such, measurements of its abundance contribute to cosmological models. In stars, it is formed by the
nuclear fusion Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
of hydrogen in proton–proton chain, proton–proton chain reactions and the CNO cycle, part of stellar nucleosynthesis.; In the Earth's atmosphere, the concentration of helium by volume is only 5.2 parts per million. The concentration is low and fairly constant despite the continuous production of new helium because most helium in the Earth's atmosphere atmospheric escape, escapes into space by several processes. In the Earth's heterosphere, a part of the upper atmosphere, helium and hydrogen are the most abundant elements. Most helium on Earth is a result of
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Helium is found in large amounts in minerals of
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
, including
uraninite Uraninite, also known as pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2 but because of oxidation typically contains variable proportions of U3O8. Radioactive decay of the uranium c ...
and its varieties
cleveite Cleveite is an impure radioactive variety of uraninite containing uranium, found in Norway. It has the composition UO2 with about 10% of the uranium substituted by rare-earth elements. It was named after Swedish chemist Per Teodor Cleve. Cleve ...
and pitchblende, carnotite and monazite (a group name; "monazite" usually refers to monazite-(Ce)), because they emit alpha particles (helium nuclei, He2+) to which electrons immediately combine as soon as the particle is stopped by the rock. In this way an estimated 3000 metric tons of helium are generated per year throughout the lithosphere. In the Earth's crust, the concentration of helium is 8 parts per billion. In seawater, the concentration is only 4 parts per trillion. There are also small amounts in mineral spring (hydrosphere), springs, volcanic gas, and meteoric iron. Because helium is trapped in the subsurface under conditions that also trap natural gas, the greatest natural concentrations of helium on the planet are found in natural gas, from which most commercial helium is extracted. The concentration varies in a broad range from a few ppm to more than 7% in a small gas field in San Juan County, New Mexico. , the world's helium reserves were estimated at 31 billion cubic meters, with a third of that being in
Qatar Qatar, officially the State of Qatar, is a country in West Asia. It occupies the Geography of Qatar, Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it shares Qatar–Saudi Arabia border, its sole land b ...
. In 2015 and 2016 additional probable reserves were announced to be under the Rocky Mountains in North America and in the East African Rift. The Bureau of Land Management (BLM) has proposed an October 2024 plan for managing natural resources in western Colorado. The plan involves closing 543,000 acres to oil and gas leasing while keeping 692,300 acres open. Among the open areas, 165,700 acres have been identified as suitable for helium recovery. The United States possesses an estimated 306 billion cubic feet of recoverable helium, sufficient to meet current consumption rates of 2.15 billion cubic feet per year for approximately 150 years.


Modern extraction and distribution

For large-scale use, helium is extracted by
fractional distillation Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation ...
from natural gas, which can contain as much as 7% helium. Since helium has a lower
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
than any other element, low temperatures and high pressure are used to liquefy nearly all the other gases (mostly
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
). The resulting crude helium gas is purified by successive exposures to lowering temperatures, in which almost all of the remaining nitrogen and other gases are precipitated out of the gaseous mixture. Activated charcoal is used as a final purification step, usually resulting in 99.995% pure Grade-A helium. The principal impurity in Grade-A helium is
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
. In a final production step, most of the helium that is produced is liquefied via a
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
process. This is necessary for applications requiring liquid helium and also allows helium suppliers to reduce the cost of long-distance transportation, as the largest liquid helium containers have more than five times the capacity of the largest gaseous helium tube trailers. In 2008, approximately 169 million standard cubic meters (SCM) of helium were extracted from natural gas or withdrawn from helium reserves, with approximately 78% from the United States, 10% from Algeria, and most of the remainder from Russia, Poland, and Qatar. By 2013, increases in helium production in Qatar (under the company Qatargas managed by Air Liquide) had increased Qatar's fraction of world helium production to 25%, making it the second largest exporter after the United States. An estimated deposit of helium was found in Tanzania in 2016. A large-scale helium plant was opened in Ningxia, China in 2020. In the United States, most helium is extracted from the natural gas of the
Hugoton Hugoton is a city in and the county seat of Stevens County, Kansas, United States. As of the 2020 census, the population of the city was 3,747. History Settlers from McPherson established a settlement in what was then west-central Seward ...
and nearby gas fields in Kansas, Oklahoma, and the Panhandle Field in Texas. Much of this gas was once sent by pipeline to the National Helium Reserve, but since 2005, this reserve has been depleted and sold off, and it is expected to be largely depleted by 2021 under the October 2013 ''Responsible Helium Administration and Stewardship Act'' (H.R. 527). The helium fields of the western United States are emerging as an alternate source of helium supply, particularly those of the "Four Corners" region (the states of Arizona, Colorado, New Mexico and Utah). Diffusion of crude natural gas through special semipermeable membranes and other barriers is another method to recover and purify helium. In 1996, the U.S. had ''proven'' helium reserves in such gas well complexes of about 147 billion standard cubic feet (4.2 billion SCM). At rates of use at that time (72 million SCM per year in the U.S.; see pie chart below) this would have been enough helium for about 58 years of U.S. use, and less than this (perhaps 80% of the time) at world use rates, although factors in saving and processing impact effective reserve numbers. Helium is generally extracted from natural gas because it is present in air at only a fraction of that of neon, yet the demand for it is far higher. It is estimated that if all neon production were retooled to save helium, 0.1% of the world's helium demands would be satisfied. Similarly, only 1% of the world's helium demands could be satisfied by re-tooling all air distillation plants. Helium can be synthesized by bombardment of lithium or boron with high-velocity protons, or by bombardment of lithium with deuterons, but these processes are a completely uneconomical method of production. Helium is commercially available in either liquid or gaseous form. As a liquid, it can be supplied in small insulated containers called Dewar flask, dewars which hold as much as 1,000 liters of helium, or in large ISO containers, which have nominal capacities as large as 42 m3 (around 11,000 U.S. gallons). In gaseous form, small quantities of helium are supplied in high-pressure cylinders holding as much as 8 m3 (approximately . 282 standard cubic feet), while large quantities of high-pressure gas are supplied in tube trailers, which have capacities of as much as 4,860 m3 (approx. 172,000 standard cubic feet).


Conservation advocates

According to helium conservationists like Nobel laureate physicist Robert Coleman Richardson, writing in 2010, the free market price of helium has contributed to "wasteful" usage (e.g. for Tethered helium balloon, helium balloons). Prices in the 2000s had been lowered by the decision of the U.S. Congress to sell off the country's large helium stockpile by 2015. According to Richardson, the price needed to be multiplied by 20 to eliminate the excessive wasting of helium. In the 2012 Nuttall et al. paper titled "Stop squandering helium", it was also proposed to create an International Helium Agency that would build a sustainable market for "this precious commodity".


Applications

While balloons are perhaps the best-known use of helium, they are a minor part of all helium use. Helium is used for many purposes that require some of its unique properties, such as its low
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envi ...
, low density, low solubility, high
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
, or Chemically inert, inertness. Of the 2014 world helium total production of about 32 million kg (180 million standard cubic meters) helium per year, the largest use (about 32% of the total in 2014) is in cryogenic applications, most of which involves cooling the superconducting magnets in medical
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and rad ...
scanners and NMR spectrometers. Other major uses were pressurizing and purging systems, welding, maintenance of controlled atmospheres, and leak detection. Other uses by category were relatively minor fractions.


Controlled atmospheres

Helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production, and in gas chromatography, because it is inert. Because of its inertness, ideal gas, thermally and calorically perfect nature, high speed of sound, and high value of the heat capacity ratio, it is also useful in supersonic wind tunnels and impulse facility, impulse facilities.


Gas tungsten arc welding

Helium is used as a shielding gas in
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a joining of the metals. It is a type of welding that uses a welding power ...
processes on materials that are contaminated and weakened by air or nitrogen at welding temperatures. A number of inert shielding gases are used in gas tungsten arc welding, but helium is used instead of cheaper
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
especially for welding materials that have higher heat conductivity, like aluminium or
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
.


Minor uses


Industrial leak detection

One industrial application for helium is leak detection. Because helium diffuses through solids three times faster than air, it is used as a tracer gas to detect leaks in high-vacuum equipment (such as cryogenic tanks) and high-pressure containers. The tested object is placed in a chamber, which is then evacuated and filled with helium. The helium that escapes through the leaks is detected by a sensitive device (
helium mass spectrometer A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the Gaseous diffusion, gas diffusion process of enri ...
), even at the leak rates as small as 10−9 mbar·L/s (10−10 Pa·m3/s). The measurement procedure is normally automatic and is called helium integral test. A simpler procedure is to fill the tested object with helium and to manually search for leaks with a hand-held device. Helium leaks through cracks should not be confused with gas permeation through a bulk material. While helium has documented permeation constants (thus a calculable permeation rate) through glasses, ceramics, and synthetic materials, inert gases such as helium will not permeate most bulk metals.


Flight

Because it is lighter than air,
airship An airship, dirigible balloon or dirigible is a type of aerostat (lighter-than-air) aircraft that can navigate through the air flying powered aircraft, under its own power. Aerostats use buoyancy from a lifting gas that is less dense than the ...
s and balloons are inflated with helium for Lifting gas, lift. While hydrogen gas is more buoyant and escapes permeating through a membrane at a lower rate, helium has the advantage of being non-flammable, and indeed fire-retardant. Another minor use is in rocketry, where helium is used as an ullage medium to backfill rocket propellant tanks in flight and to condense hydrogen and oxygen to make
rocket fuel Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overvi ...
. It is also used to purge fuel and oxidizer from ground support equipment prior to launch and to pre-cool liquid hydrogen in space vehicles. For example, the Saturn V rocket used in the Apollo program needed about of helium to launch.


Minor commercial and recreational uses

Helium as a breathing gas has no Nitrogen narcosis, narcotic properties, so helium mixtures such as Trimix (breathing gas), trimix, heliox and Trimix (breathing gas)#Heliair, heliair are used for deep diving to reduce the effects of narcosis, which worsen with increasing depth. As pressure increases with depth, the density of the breathing gas also increases, and the low molecular weight of helium is found to considerably reduce the effort of breathing by lowering the density of the mixture. This reduces the Reynolds number of flow, leading to a reduction of turbulent flow and an increase in laminar flow, which requires less breathing. At depths below divers breathing helium-oxygen mixtures begin to experience tremors and a decrease in psychomotor function, symptoms of high-pressure nervous syndrome. This effect may be countered to some extent by adding an amount of narcotic gas such as hydrogen or nitrogen to a helium–oxygen mixture. Helium–neon lasers, a type of low-powered gas laser producing a red beam, had various practical applications which included barcode readers and laser pointers, before they were almost universally replaced by cheaper diode lasers. For its inertness and high
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
, neutron transparency, and because it does not form radioactive isotopes under reactor conditions, helium is used as a heat-transfer medium in some gas-cooled reactor, gas-cooled nuclear reactors. Helium, mixed with a heavier gas such as xenon, is useful for thermoacoustic refrigeration due to the resulting high heat capacity ratio and low Prandtl number. The inertness of helium has environmental advantages over conventional refrigeration systems which contribute to ozone depletion or global warming. Helium is also used in some hard disk drives.


Scientific uses

The use of helium reduces the distorting effects of temperature variations in the space between lens (optics), lenses in some telescopes due to its extremely low
index of refraction In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
. This method is especially used in solar telescopes where a vacuum tight telescope tube would be too heavy. Helium is a commonly used carrier gas for gas chromatography. The age of rocks and minerals that contain uranium and thorium can be estimated by measuring the level of helium with a process known as helium dating. Helium at low temperatures is used in cryogenics and in certain cryogenic applications. As examples of applications, liquid helium is used to cool certain metals to the extremely low temperatures required for
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
, such as in
superconducting magnet A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much ...
s for magnetic resonance imaging. The Large Hadron Collider at CERN uses 96 metric tons of liquid helium to maintain the temperature at .


Medical uses

Helium was approved for medical use in the United States in April 2020 for humans and animals.


As a contaminant

While chemically inert, helium contamination impairs the operation of microelectromechanical systems (MEMS) such that iPhones may fail.


Inhalation and safety


Effects

Neutral helium at standard conditions is non-toxic, plays no biological role and is found in trace amounts in human blood. The speed of sound in helium is nearly three times the speed of sound in air. Because the fundamental frequency, natural resonance frequency of a gas-filled cavity is proportional to the speed of sound in the gas, when helium is inhaled, a corresponding increase occurs in the resonant frequency, resonant frequencies of the vocal tract, which is the amplifier of vocal sound. This increase in the resonant frequency of the amplifier (the vocal tract) gives increased amplification to the high-frequency components of the sound wave produced by the direct vibration of the vocal folds, compared to the case when the voice box is filled with air. When a person speaks after inhaling helium gas, the muscles that control the voice box still move in the same way as when the voice box is filled with air; therefore the fundamental frequency (sometimes called Pitch (music), pitch) produced by direct vibration of the vocal folds does not change. However, the high-frequency-preferred amplification causes a change in timbre of the amplified sound, resulting in a reedy, duck-like vocal quality. The opposite effect, lowering resonant frequencies, can be obtained by inhaling a dense gas such as sulfur hexafluoride or xenon.


Hazards

Inhaling helium can be dangerous if done to excess, since helium is a simple asphyxiant gas, asphyxiant and so displaces oxygen needed for normal respiration. Fatalities have been recorded, including a youth who suffocated in Vancouver in 2003 and two adults who suffocated in South Florida in 2006. In 1998, an Australian girl from Victoria fell unconscious and temporarily cyanosis, turned blue after inhaling the entire contents of a party balloon. Inhaling helium directly from pressurized cylinders or even balloon filling valves is extremely dangerous, as high flow rate and pressure can result in barotrauma, fatally rupturing lung tissue. Death caused by helium is rare. The first media-recorded case was that of a 15-year-old girl from Texas who died in 1998 from helium inhalation at a friend's party; the exact type of helium death is unidentified. In the United States, only two fatalities were reported between 2000 and 2004, including a man who died in North Carolina of barotrauma in 2002. A youth asphyxiated in Vancouver during 2003, and a 27-year-old man in Australia had an embolism after breathing from a cylinder in 2000. Since then, two adults asphyxiated in South Florida in 2006, and there were cases in 2009 and 2010, one of whom was a Californian youth who was found with a bag over his head, attached to a helium tank, and another teenager in Northern Ireland died of asphyxiation. At Eagle Point, Oregon a teenage girl died in 2012 from barotrauma at a party. A girl from Michigan died from hypoxia later in the year. On February 4, 2015, it was revealed that, during the recording of their main TV show on January 28, a 12-year-old member (name withheld) of Japanese all-girl singing group 3B Junior suffered from air embolism, losing consciousness and falling into a coma as a result of air bubbles blocking the flow of blood to the brain after inhaling huge quantities of helium as part of a game. The incident was not made public until a week later. The staff of TV Asahi held an emergency press conference to communicate that the member had been taken to the hospital and is showing signs of rehabilitation such as moving eyes and limbs, but her consciousness has not yet been sufficiently recovered. Police have launched an investigation due to a neglect of safety measures. The safety issues for cryogenic helium are similar to those of liquid nitrogen; its extremely low temperatures can result in frostbite, cold burns, and the liquid-to-gas expansion ratio can cause explosions if no pressure-relief devices are installed. Containers of helium gas at 5 to 10 K should be handled as if they contain liquid helium due to the rapid and significant thermal expansion that occurs when helium gas at less than 10 K is warmed to room temperature. At high pressures (more than about 20 atm or two MPa), a mixture of helium and oxygen (heliox) can lead to high-pressure nervous syndrome, a sort of reverse-anesthetic effect; adding a small amount of nitrogen to the mixture can alleviate the problem.


See also

* Abiogenic petroleum origin * Helium-3 propulsion * Leidenfrost effect * Superfluid * Tracer-gas leak testing method * Hamilton Cady


Notes


References


Bibliography

* * * *


External links

General
U.S. Government's Bureau of Land Management: Sources, Refinement, and Shortage.
With some history of helium.
U.S. Geological Survey publications on helium
beginning 1996
Helium

Where is all the helium?
Aga website


Chemistry in its element podcast
(MP3) from the Royal Society of Chemistry's Chemistry World
Helium


includes health and safety information regarding accidental exposures to helium More detail

at ''The Periodic Table of Videos'' (University of Nottingham)
Helium
at the Helsinki University of Technology; includes pressure-temperature phase diagrams for helium-3 and helium-4
Lancaster University, Ultra Low Temperature Physics
nbsp;– includes a summary of some low temperature techniques *Video

(Alfred Leitner, 1963, 38 min.) Miscellaneous

with audio samples that demonstrate the unchanged voice pitch

Helium shortage
America's Helium Supply: Options for Producing More Helium from Federal Land: Oversight Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Natural Resources, U.S. House Of Representatives, One Hundred Thirteenth Congress, First Session, Thursday, July 11, 2013

Helium Program: Urgent Issues Facing BLM's Storage and Sale of Helium Reserves: Testimony before the Committee on Natural Resources, House of Representatives
Government Accountability Office * * {{Authority control Helium, Chemical elements Noble gases Quantum phases Airship technology Coolants Nuclear reactor coolants Underwater diving equipment E-number additives Helios