Gauge Connection
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, a gauge theory is a type of field theory in which the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s). Formally, the Lagrangian is
invariant Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
under these transformations. The term "gauge" refers to any specific mathematical formalism to regulate redundant
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the ''
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
'' or the gauge group of the theory. Associated with any Lie group is the
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
of
group generator In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. In othe ...
s. For each group generator there necessarily arises a corresponding
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
(usually a
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
) called the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quanta of the gauge fields are called ''
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s''. If the symmetry group is non-commutative, then the gauge theory is referred to as '' non-abelian gauge theory'', the usual example being the
Yang–Mills theory Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special un ...
. Many powerful theories in physics are described by Lagrangians that are invariant under some symmetry transformation groups. When they are invariant under a transformation identically performed at ''every'' point in the
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
in which the physical processes occur, they are said to have a
global symmetry The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...
.
Local symmetry The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...
, the cornerstone of gauge theories, is a stronger constraint. In fact, a global symmetry is just a local symmetry whose group's parameters are fixed in spacetime (the same way a constant value can be understood as a function of a certain parameter, the output of which is always the same). Gauge theories are important as the successful field theories explaining the dynamics of
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a con ...
.
Quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
is an
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a group ...
gauge theory with the symmetry group
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
and has one gauge field, the
electromagnetic four-potential An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. W ...
, with the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
being the gauge boson. The
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
is a non-abelian gauge theory with the symmetry group U(1) ×
SU(2) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 ...
×
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The matrices of the more general unitary group may have complex determinants with absolute value 1, rather than real 1 i ...
and has a total of twelve gauge bosons: the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
, three
weak boson In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
s and eight
gluons A gluon ( ) is a type of massless elementary particle that mediates the strong interaction between quarks, acting as the exchange particle for the interaction. Gluons are massless vector bosons, thereby having a spin of 1. Through the s ...
. Gauge theories are also important in explaining
gravitation In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
in the theory of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. Its case is somewhat unusual in that the gauge field is a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
, the Lanczos tensor. Theories of
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
, beginning with
gauge gravitation theory In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. ''Gauge gravitation theory'' should not be confused with th ...
, also postulate the existence of a gauge boson known as the
graviton In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with re ...
. Gauge symmetries can be viewed as analogues of the
principle of general covariance In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the ''form'' of physical laws under arbitrary differentiable coordinate transformations. The essential idea is ...
of general relativity in which the coordinate system can be chosen freely under arbitrary
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
s of spacetime. Both gauge invariance and diffeomorphism invariance reflect a redundancy in the description of the system. An alternative theory of gravitation,
gauge theory gravity Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual dif ...
, replaces the principle of general covariance with a true gauge principle with new gauge fields. Historically, these ideas were first stated in the context of
classical electromagnetism Classical electromagnetism or classical electrodynamics is a branch of physics focused on the study of interactions between electric charges and electrical current, currents using an extension of the classical Newtonian model. It is, therefore, a ...
and later in
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. However, the modern importance of gauge symmetries appeared first in the
relativistic quantum mechanics In physics, relativistic quantum mechanics (RQM) is any Poincaré- covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light ' ...
of
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
, elaborated on below. Today, gauge theories are useful in
condensed matter Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More gen ...
,
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics * Nuclear space *Nuclear ...
and
high energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
among other subfields.


History

The concept and the name of gauge theory derives from the work of
Hermann Weyl Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
in 1918. Weyl, in an attempt to generalize the geometrical ideas of
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
to include
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, conjectured that ''Eichinvarianz'' or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity. After the development of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
, Weyl,
Vladimir Fock Vladimir Aleksandrovich Fock (or Fok; ) (December 22, 1898 – December 27, 1974) was a Soviet physicist, who did foundational work on quantum mechanics and quantum electrodynamics. Biography He was born in St. Petersburg, Russia. In  ...
and
Fritz London Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German born physicist and professor at Duke University. His fundamental contributions to the theories of chemical bonding and of intermolecular forces (London dispersion forces) are to ...
replaced the simple scale factor with a
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
quantity and turned the scale transformation into a change of
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
, which is a
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
gauge symmetry. This explained the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
effect on the
wave function In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
of a
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
d quantum mechanical
particle In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
. Weyl's 1929 paper introduced the modern concept of gauge invariance subsequently popularized by
Wolfgang Pauli Wolfgang Ernst Pauli ( ; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and a pioneer of quantum mechanics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics "for the ...
in his 1941 review. In retrospect,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
's formulation, in 1864–65, of
electrodynamics In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
in "
A Dynamical Theory of the Electromagnetic Field "A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. ''(Paper read at a meeting of the Royal Society on 8 December 1864).'' Physicist Freeman Dyson called the publishing of the ...
" suggested the possibility of invariance, when he stated that any vector field whose curl vanishes—and can therefore normally be written as a
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
of a function—could be added to the vector potential without affecting the
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
. Similarly unnoticed,
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
had derived the
Einstein field equations In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
by postulating the invariance of the
action Action may refer to: * Action (philosophy), something which is done by a person * Action principles the heart of fundamental physics * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video gam ...
under a general coordinate transformation. The importance of these symmetry invariances remained unnoticed until Weyl's work. Inspired by Pauli's descriptions of connection between charge conservation and field theory driven by invariance,
Chen Ning Yang Yang Chen-Ning or Chen-Ning Yang (; born 1 October 1922), also known as C. N. Yang or by the English name Frank Yang, is a Chinese theoretical physicist who made significant contributions to statistical mechanics, integrable systems, gauge th ...
sought a field theory for
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford at the University of Manchester based on the 1909 Geiger–Marsden gold foil experiment. Aft ...
binding based on conservation of nuclear
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetr ...
. In 1954, Yang and Robert Mills generalized the gauge invariance of electromagnetism, constructing a theory based on the action of the (non-abelian) SU(2) symmetry
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
on the
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetr ...
doublet of
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. This is similar to the action of the
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
group on the
spinor In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. The
Yang–Mills theory Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special un ...
became the prototype theory to resolve some of the confusion in
elementary particle physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stud ...
. This idea later found application in the
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
of the
weak force In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
, and its unification with electromagnetism in the
electroweak In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forc ...
theory. Gauge theories became even more attractive when it was realized that non-abelian gauge theories reproduced a feature called
asymptotic freedom In quantum field theory, asymptotic freedom is a property of some gauge theory, gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (A ...
. Asymptotic freedom was believed to be an important characteristic of strong interactions. This motivated searching for a strong force gauge theory. This theory, now known as
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, is a gauge theory with the action of the SU(3) group on the
color Color (or colour in English in the Commonwealth of Nations, Commonwealth English; American and British English spelling differences#-our, -or, see spelling differences) is the visual perception based on the electromagnetic spectrum. Though co ...
triplet of
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
. The
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
unifies the description of electromagnetism, weak interactions and strong interactions in the language of gauge theory. In the 1970s,
Michael Atiyah Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the ...
began studying the mathematics of solutions to the classical Yang–Mills equations. In 1983, Atiyah's student
Simon Donaldson Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth function, smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähl ...
built on this work to show that the
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
classification of
smooth Smooth may refer to: Mathematics * Smooth function, a function that is infinitely differentiable; used in calculus and topology * Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions * Smooth algebrai ...
4-
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s is very different from their classification
up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
.
Michael Freedman Michael Hartley Freedman (born April 21, 1951) is an American mathematician at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gen ...
used Donaldson's work to exhibit exotic R4s, that is, exotic
differentiable structure In mathematics, an ''n''- dimensional differential structure (or differentiable structure) on a set ''M'' makes ''M'' into an ''n''-dimensional differential manifold, which is a topological manifold with some additional structure that allows for d ...
s on Euclidean 4-dimensional space. This led to an increasing interest in gauge theory for its own sake, independent of its successes in fundamental physics. In 1994,
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
and
Nathan Seiberg Nathan "Nati" Seiberg (; ; born September 22, 1956) is an Israeli American theoretical physicist who works on quantum field theory and string theory. He is currently a professor at the Institute for Advanced Study in Princeton, New Jersey, Unit ...
invented gauge-theoretic techniques based on
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
that enabled the calculation of certain
topological Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
invariants (the Seiberg–Witten invariants). These contributions to mathematics from gauge theory have led to a renewed interest in this area. The importance of gauge theories in physics is exemplified in the success of the mathematical formalism in providing a unified framework to describe the
quantum field theories In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, the
weak force In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
and the
strong force In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, an ...
. This theory, known as the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
, accurately describes experimental predictions regarding three of the four
fundamental force In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist: * gravity * electromagnetism * weak int ...
s of nature, and is a gauge theory with the gauge group SU(3) × SU(2) × U(1). Modern theories like
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
, as well as
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, are, in one way or another, gauge theories. : ''See Jackson and Okun'' '' for early history of gauge and Pickering'' '' for more about the history of gauge and quantum field theories.''


Description


Global and local symmetries


Global symmetry

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, the mathematical description of any physical situation usually contains excess
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
; the same physical situation is equally well described by many equivalent mathematical configurations. For instance, in
Newtonian dynamics In physics, Newtonian dynamics (also known as Newtonian mechanics) is the study of the dynamics of a particle or a small body according to Newton's laws of motion. Mathematical generalizations Typically, the Newtonian dynamics occurs in a thre ...
, if two configurations are related by a
Galilean transformation In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotati ...
(an
inertial In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
change of reference frame) they represent the same physical situation. These transformations form a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
of "
symmetries Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
" of the theory, and a physical situation corresponds not to an individual mathematical configuration but to a class of configurations related to one another by this symmetry group. This idea can be generalized to include local as well as global symmetries, analogous to much more abstract "changes of coordinates" in a situation where there is no preferred "
inertial In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
" coordinate system that covers the entire physical system. A gauge theory is a mathematical model that has symmetries of this kind, together with a set of techniques for making physical predictions consistent with the symmetries of the model.


Example of global symmetry

When a quantity occurring in the mathematical configuration is not just a number but has some geometrical significance, such as a velocity or an axis of rotation, its representation as numbers arranged in a vector or matrix is also changed by a coordinate transformation. For instance, if one description of a pattern of fluid flow states that the fluid velocity in the neighborhood of (, ) is 1 m/s in the positive ''x'' direction, then a description of the same situation in which the coordinate system has been rotated clockwise by 90 degrees states that the fluid velocity in the neighborhood of (, ) is 1 m/s in the negative ''y'' direction. The coordinate transformation has affected both the coordinate system used to identify the ''location'' of the measurement and the basis in which its ''value'' is expressed. As long as this transformation is performed globally (affecting the coordinate basis in the same way at every point), the effect on values that represent the ''rate of change'' of some quantity along some path in space and time as it passes through point ''P'' is the same as the effect on values that are truly local to ''P''.


Local symmetry


= Use of fiber bundles to describe local symmetries

= In order to adequately describe physical situations in more complex theories, it is often necessary to introduce a "coordinate basis" for some of the objects of the theory that do not have this simple relationship to the coordinates used to label points in space and time. (In mathematical terms, the theory involves a
fiber bundle In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
in which the fiber at each point of the base space consists of possible coordinate bases for use when describing the values of objects at that point.) In order to spell out a mathematical configuration, one must choose a particular coordinate basis at each point (a ''local section'' of the fiber bundle) and express the values of the objects of the theory (usually "
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
" in the physicist's sense) using this basis. Two such mathematical configurations are equivalent (describe the same physical situation) if they are related by a transformation of this abstract coordinate basis (a change of local section, or ''gauge transformation''). In most gauge theories, the set of possible transformations of the abstract gauge basis at an individual point in space and time is a finite-dimensional Lie group. The simplest such group is
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
, which appears in the modern formulation of quantum electrodynamics (QED) via its use of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. QED is generally regarded as the first, and simplest, physical gauge theory. The set of possible gauge transformations of the entire configuration of a given gauge theory also forms a group, the ''gauge group'' of the theory. An element of the gauge group can be parameterized by a smoothly varying function from the points of spacetime to the (finite-dimensional) Lie group, such that the value of the function and its derivatives at each point represents the action of the gauge transformation on the fiber over that point. A gauge transformation with constant parameter at every point in space and time is analogous to a rigid rotation of the geometric coordinate system; it represents a
global symmetry The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...
of the gauge representation. As in the case of a rigid rotation, this gauge transformation affects expressions that represent the rate of change along a path of some gauge-dependent quantity in the same way as those that represent a truly local quantity. A gauge transformation whose parameter is ''not'' a constant function is referred to as a
local symmetry The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...
; its effect on expressions that involve a
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
is qualitatively different from that on expressions that do not. (This is analogous to a non-inertial change of reference frame, which can produce a
Coriolis effect In physics, the Coriolis force is a pseudo force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the moti ...
.)


Gauge fields

The "gauge covariant" version of a gauge theory accounts for this effect by introducing a ''gauge field'' (in mathematical language, an
Ehresmann connection In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does ...
) and formulating all rates of change in terms of the
covariant derivative In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between ...
with respect to this connection. The gauge field becomes an essential part of the description of a mathematical configuration. A configuration in which the gauge field can be eliminated by a gauge transformation has the property that its
field strength In physics, field strength refers to a value in a vector-valued field (e.g., in volts per meter, V/m, for an electric field ''E''). For example, an electromagnetic field has both electric field strength and magnetic field strength. Field str ...
(in mathematical language, its
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
) is zero everywhere; a gauge theory is ''not'' limited to these configurations. In other words, the distinguishing characteristic of a gauge theory is that the gauge field does not merely compensate for a poor choice of coordinate system; there is generally no gauge transformation that makes the gauge field vanish. When analyzing the dynamics of a gauge theory, the gauge field must be treated as a dynamical variable, similar to other objects in the description of a physical situation. In addition to its interaction with other objects via the covariant derivative, the gauge field typically contributes
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
in the form of a "self-energy" term. One can obtain the equations for the gauge theory by: * starting from a naïve
ansatz In physics and mathematics, an ansatz (; , meaning: "initial placement of a tool at a work piece", plural ansatzes or, from German, ansätze ; ) is an educated guess or an additional assumption made to help solve a problem, and which may later be ...
without the gauge field (in which the derivatives appear in a "bare" form); * listing those global symmetries of the theory that can be characterized by a continuous parameter (generally an abstract equivalent of a rotation angle); * computing the correction terms that result from allowing the symmetry parameter to vary from place to place; and * reinterpreting these correction terms as couplings to one or more gauge fields, and giving these fields appropriate self-energy terms and dynamical behavior. This is the sense in which a gauge theory "extends" a global symmetry to a local symmetry, and closely resembles the historical development of the gauge theory of gravity known as
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
.


Physical experiments

Gauge theories used to model the results of physical experiments engage in: * limiting the universe of possible configurations to those consistent with the information used to set up the experiment, and then * computing the probability distribution of the possible outcomes that the experiment is designed to measure. We cannot express the mathematical descriptions of the "setup information" and the "possible measurement outcomes", or the "boundary conditions" of the experiment, without reference to a particular coordinate system, including a choice of gauge. One assumes an adequate experiment isolated from "external" influence that is itself a gauge-dependent statement. Mishandling gauge dependence calculations in boundary conditions is a frequent source of anomalies, and approaches to anomaly avoidance classifies gauge theories.


Continuum theories

The two gauge theories mentioned above, continuum electrodynamics and general relativity, are continuum field theories. The techniques of calculation in a
continuum theory In the mathematical field of point-set topology, a continuum (plural: "continua") is a nonempty compact connected metric space, or, less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the st ...
implicitly assume that: * given a completely fixed choice of gauge, the boundary conditions of an individual configuration are completely described * given a completely fixed gauge and a complete set of boundary conditions, the least action determines a unique mathematical configuration and therefore a unique physical situation consistent with these bounds * fixing the gauge introduces no anomalies in the calculation, due either to gauge dependence in describing partial information about boundary conditions or to incompleteness of the theory. Determination of the likelihood of possible measurement outcomes proceed by: * establishing a probability distribution over all physical situations determined by boundary conditions consistent with the setup information * establishing a probability distribution of measurement outcomes for each possible physical situation * convolving these two probability distributions to get a distribution of possible measurement outcomes consistent with the setup information These assumptions have enough validity across a wide range of energy scales and experimental conditions to allow these theories to make accurate predictions about almost all of the phenomena encountered in daily life: light, heat, and electricity, eclipses, spaceflight, etc. They fail only at the smallest and largest scales due to omissions in the theories themselves, and when the mathematical techniques themselves break down, most notably in the case of
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
and other
chaotic Chaotic was originally a Danish trading card game. It expanded to an online game in America which then became a television program based on the game. The program aired on 4Kids TV (Fox affiliates, nationwide), Jetix, The CW4Kids, Cartoon Netwo ...
phenomena.


Quantum field theories

Other than these classical continuum field theories, the most widely known gauge theories are
quantum field theories In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatom ...
, including
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
and the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of elementary particle physics. The starting point of a quantum field theory is much like that of its continuum analog: a gauge-covariant
action integral Action may refer to: * Action (philosophy), something which is done by a person * Action principles the heart of fundamental physics * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video ga ...
that characterizes "allowable" physical situations according to the
principle of least action Action principles lie at the heart of fundamental physics, from classical mechanics through quantum mechanics, particle physics, and general relativity. Action principles start with an energy function called a Lagrangian describing the physical sy ...
. However, continuum and quantum theories differ significantly in how they handle the excess degrees of freedom represented by gauge transformations. Continuum theories, and most pedagogical treatments of the simplest quantum field theories, use a
gauge fixing In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
prescription to reduce the orbit of mathematical configurations that represent a given physical situation to a smaller orbit related by a smaller gauge group (the global symmetry group, or perhaps even the trivial group). More sophisticated quantum field theories, in particular those that involve a non-abelian gauge group, break the gauge symmetry within the techniques of
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
by introducing additional fields (the
Faddeev–Popov ghost In physics, Faddeev–Popov ghosts (also called Faddeev–Popov gauge ghosts or Faddeev–Popov ghost fields) are extraneous fields which are introduced into gauge quantum field theories to maintain the consistency of the path integral form ...
s) and counterterms motivated by
anomaly cancellation In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmet ...
, in an approach known as
BRST quantization In theoretical physics, the BRST formalism, or BRST quantization (where the ''BRST'' refers to the last names of Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a fi ...
. While these concerns are in one sense highly technical, they are also closely related to the nature of measurement, the limits on knowledge of a physical situation, and the interactions between incompletely specified experimental conditions and incompletely understood physical theory. The mathematical techniques that have been developed in order to make gauge theories tractable have found many other applications, from
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
and
crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
to
low-dimensional topology In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the theory of 3-manifolds and 4-manifolds, knot theory, ...
.


Classical gauge theory


Classical electromagnetism

In
electrostatics Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical antiquity, classical times, it has been known that some materials, such as amber, attract lightweight particles after triboelectric e ...
, one can either discuss the electric field, E, or its corresponding
electric potential Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
, ''V''. Knowledge of one makes it possible to find the other, except that potentials differing by a constant, V \mapsto V+C, correspond to the same electric field. This is because the electric field relates to ''changes'' in the potential from one point in space to another, and the constant ''C'' would cancel out when subtracting to find the change in potential. In terms of
vector calculus Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
, the electric field is the
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
of the potential, \mathbf = -\nabla V. Generalizing from static electricity to electromagnetism, we have a second potential, the
vector potential In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field \mathbf, a ' ...
A, with : \begin \mathbf &= -\nabla V - \frac\\ \mathbf &= \nabla \times \mathbf \end The general gauge transformations now become not just V \mapsto V+C but : \begin \mathbf &\mapsto \mathbf + \nabla f\\ V &\mapsto V - \frac \end where ''f'' is any twice continuously differentiable function that depends on position and time. The electromagnetic fields remain the same under the gauge transformation.


Example: scalar O(''n'') gauge theory

: ''The remainder of this section requires some familiarity with classical or
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, and the use of
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
s.'' : ''Definitions in this section:
gauge group A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P\to X with a structure Lie group G, a gauge group is defined to be a group of its vertical ...
,
gauge field In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
, interaction Lagrangian,
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
.'' The following illustrates how local gauge invariance can be "motivated" heuristically starting from global symmetry properties, and how it leads to an interaction between originally non-interacting fields. Consider a set of n non-interacting real
scalar field In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical ...
s, with equal masses ''m''. This system is described by an
action Action may refer to: * Action (philosophy), something which is done by a person * Action principles the heart of fundamental physics * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video gam ...
that is the sum of the (usual) action for each scalar field \varphi_i : \mathcal = \int \, \mathrm^4 x \sum_^n \left \frac \partial_\mu \varphi_i \partial^\mu \varphi_i - \fracm^2 \varphi_i^2 \right/math> The Lagrangian (density) can be compactly written as : \ \mathcal = \frac (\partial_\mu \Phi)^\mathsf \partial^\mu \Phi - \fracm^2 \Phi^\mathsf \Phi by introducing a
vector Vector most often refers to: * Euclidean vector, a quantity with a magnitude and a direction * Disease vector, an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematics a ...
of fields : \ \Phi^\mathsf = ( \varphi_1, \varphi_2,\ldots, \varphi_n) The term \partial_\mu\Phi is the
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). P ...
of \Phi along dimension \mu. It is now transparent that the Lagrangian is invariant under the transformation : \ \Phi \mapsto \Phi' = G \Phi whenever ''G'' is a ''constant''
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
belonging to the ''n''-by-''n''
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
O(''n''). This is seen to preserve the Lagrangian, since the derivative of \Phi' transforms identically to \Phi and both quantities appear inside
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
s in the Lagrangian (orthogonal transformations preserve the dot product). : \ (\partial_\mu \Phi) \mapsto (\partial_\mu \Phi)' = G \partial_\mu \Phi This characterizes the ''global'' symmetry of this particular Lagrangian, and the symmetry group is often called the gauge group; the mathematical term is
structure group In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
, especially in the theory of
G-structure In differential geometry, a ''G''-structure on an ''n''-manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes vario ...
s. Incidentally,
Noether's theorem Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems (see Noether's second theorem) published by the mat ...
implies that invariance under this group of transformations leads to the conservation of the ''currents'' : \ J^_ = i\partial_\mu \Phi^\mathsf T^ \Phi where the ''Ta'' matrices are generators of the SO(''n'') group. There is one conserved current for every generator. Now, demanding that this Lagrangian should have ''local'' O(''n'')-invariance requires that the ''G'' matrices (which were earlier constant) should be allowed to become functions of the
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
s ''x''. In this case, the ''G'' matrices do not "pass through" the derivatives, when ''G'' = ''G''(''x''), : \ \partial_\mu (G \Phi) \neq G (\partial_\mu \Phi) The failure of the derivative to commute with "G" introduces an additional term (in keeping with the product rule), which spoils the invariance of the Lagrangian. In order to rectify this we define a new derivative operator such that the derivative of \Phi' again transforms identically with \Phi : \ (D_\mu \Phi)' = G D_\mu \Phi This new "derivative" is called a (gauge) covariant derivative and takes the form : \ D_\mu = \partial_\mu - i g A_\mu where ''g'' is called the coupling constant; a quantity defining the strength of an interaction. After a simple calculation we can see that the gauge field ''A''(''x'') must transform as follows : \ A'_\mu = G A_\mu G^ - \frac (\partial_\mu G)G^ The gauge field is an element of the Lie algebra, and can therefore be expanded as : \ A_ = \sum_a A_^a T^a There are therefore as many gauge fields as there are generators of the Lie algebra. Finally, we now have a ''locally gauge invariant'' Lagrangian : \ \mathcal_\mathrm = \frac (D_\mu \Phi)^\mathsf D^\mu \Phi -\fracm^2 \Phi^\mathsf \Phi Pauli uses the term ''gauge transformation of the first type'' to mean the transformation of \Phi, while the compensating transformation in A is called a ''gauge transformation of the second type''. The difference between this Lagrangian and the original ''globally gauge-invariant'' Lagrangian is seen to be the interaction Lagrangian : \ \mathcal_\mathrm = i\frac \Phi^\mathsf A_^\mathsf \partial^\mu \Phi + i\frac (\partial_\mu \Phi)^\mathsf A^ \Phi - \frac (A_\mu \Phi)^\mathsf A^\mu \Phi This term introduces interactions between the ''n'' scalar fields just as a consequence of the demand for local gauge invariance. However, to make this interaction physical and not completely arbitrary, the mediator ''A''(''x'') needs to propagate in space. That is dealt with in the next section by adding yet another term, \mathcal_, to the Lagrangian. In the quantized version of the obtained
classical field theory A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called qua ...
, the quanta of the gauge field ''A''(''x'') are called
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles whose interactions are described by a gauge theory interact with each other by the exchange of gauge ...
s. The interpretation of the interaction Lagrangian in quantum field theory is of
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s interacting by the exchange of these gauge bosons.


Yang–Mills Lagrangian for the gauge field

The picture of a classical gauge theory developed in the previous section is almost complete, except for the fact that to define the covariant derivatives ''D'', one needs to know the value of the gauge field A(x) at all spacetime points. Instead of manually specifying the values of this field, it can be given as the solution to a field equation. Further requiring that the Lagrangian that generates this field equation is locally gauge invariant as well, one possible form for the gauge field Lagrangian is : \mathcal_\text = -\frac \operatorname\left(F^ F_\right) = -\frac F^ F^a_ where the F^a_ are obtained from potentials A^a_\mu, being the components of A(x), by : F_^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g\sum_ f^ A_\mu^b A_\nu^c and the f^ are the
structure constants In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in ...
of the Lie algebra of the generators of the gauge group. This formulation of the Lagrangian is called a Yang–Mills action. Other gauge invariant actions also exist (e.g.,
nonlinear electrodynamics In high-energy physics, nonlinear electrodynamics (NED or NLED) refers to a family of generalizations of Maxwell electrodynamics which describe electromagnetic fields that exhibit nonlinear dynamics. For a theory to describe the electromagnet ...
, Born–Infeld action, Chern–Simons model, theta term, etc.). In this Lagrangian term there is no field whose transformation counterweighs the one of A. Invariance of this term under gauge transformations is a particular case of ''a priori'' classical (geometrical) symmetry. This symmetry must be restricted in order to perform quantization, the procedure being denominated
gauge fixing In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
, but even after restriction, gauge transformations may be possible.J. J. Sakurai, ''Advanced Quantum Mechanics'', Addison-Wesley, 1967, sect. 1–4. The complete Lagrangian for the gauge theory is now : \mathcal = \mathcal_\text + \mathcal_\text = \mathcal_\text + \mathcal_\text + \mathcal_\text


Example: electrodynamics

As a simple application of the formalism developed in the previous sections, consider the case of
electrodynamics In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
, with only the
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
field. The bare-bones action that generates the electron field's
Dirac equation In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
is : \mathcal = \int \bar\left(i \hbar c \, \gamma^\mu \partial_\mu - mc^2\right) \psi \, \mathrm^4 x The global symmetry for this system is : \psi \mapsto e^ \psi The gauge group here is
U(1) In mathematics, the circle group, denoted by \mathbb T or , is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers \mathbb T = \. The circle g ...
, just rotations of the phase angle of the field, with the particular rotation determined by the constant . "Localising" this symmetry implies the replacement of by . An appropriate covariant derivative is then : D_\mu = \partial_\mu - i \frac A_\mu Identifying the "charge" (not to be confused with the mathematical constant e in the symmetry description) with the usual
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
(this is the origin of the usage of the term in gauge theories), and the gauge field with the four-
vector potential In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field \mathbf, a ' ...
of the
electromagnetic field An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
results in an interaction Lagrangian : \mathcal_\text = \frac\bar(x) \gamma^\mu \psi(x) A_\mu(x) = J^\mu(x) A_\mu(x) where J^\mu(x) = \frac\bar(x) \gamma^\mu \psi(x) is the electric current
four vector In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vect ...
in the
Dirac field In quantum field theory, a fermionic field is a quantum field whose Quantum, quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relation ...
. The gauge principle is therefore seen to naturally introduce the so-called
minimal coupling In analytical mechanics and quantum field theory, minimal coupling refers to a coupling between fields which involves only the charge distribution and not higher multipole moments of the charge distribution. This minimal coupling is in contrast to, ...
of the electromagnetic field to the electron field. Adding a Lagrangian for the gauge field A_\mu(x) in terms of the
field strength tensor In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
exactly as in electrodynamics, one obtains the Lagrangian used as the starting point in
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
. : \mathcal_\text = \bar\left(i\hbar c \, \gamma^\mu D_\mu - mc^2\right)\psi - \fracF_F^


Mathematical formalism

Gauge theories are usually discussed in the language of
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
. Mathematically, a ''gauge'' is just a choice of a (local)
section Section, Sectioning, or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
of some
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
. A gauge transformation is just a transformation between two such sections. Although gauge theory is dominated by the study of
connections Connections may refer to: * Connection (disambiguation), plural form Television * '' Connections: An Investigation into Organized Crime in Canada'', a documentary television series * ''Connections'' (British TV series), a 1978 documentary tele ...
(primarily because it's mainly studied by high-energy physicists), the idea of a connection is not central to gauge theory in general. In fact, a result in general gauge theory shows that
affine representation In mathematics, an affine representation of a topological Lie group ''G'' on an affine space ''A'' is a continuous ( smooth) group homomorphism from ''G'' to the automorphism group of ''A'', the affine group Aff(''A''). Similarly, an affine re ...
s (i.e., affine
modules Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computer science and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components ...
) of the gauge transformations can be classified as sections of a
jet bundle In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. ...
satisfying certain properties. There are representations that transform covariantly pointwise (called by physicists gauge transformations of the first kind), representations that transform as a
connection form In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Carta ...
(called by physicists gauge transformations of the second kind, an affine representation)—and other more general representations, such as the B field in
BF theory The BF model or BF theory is a topological field, which when quantized, becomes a topological quantum field theory. BF stands for background field B and F, as can be seen below, are also the variables appearing in the Lagrangian of the theory, whi ...
. There are more general nonlinear representations (realizations), but these are extremely complicated. Still,
nonlinear sigma model In quantum field theory, a nonlinear ''σ'' model describes a field that takes on values in a nonlinear manifold called the target manifold  ''T''. The non-linear ''σ''-model was introduced by , who named it after a field corresponding to a ...
s transform nonlinearly, so there are applications. If there is a
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equ ...
''P'' whose base space is
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
or
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
and
structure group In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
is a Lie group, then the sections of ''P'' form a
principal homogeneous space In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-e ...
of the group of gauge transformations.
Connection Connection may refer to: Mathematics *Connection (algebraic framework) *Connection (mathematics), a way of specifying a derivative of a geometrical object along a vector field on a manifold * Connection (affine bundle) *Connection (composite bun ...
s (gauge connection) define this principal bundle, yielding a
covariant derivative In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between ...
∇ in each
associated vector bundle Associated may refer to: *Associated, former name of Avon, Contra Costa County, California *Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associatio ...
. If a local frame is chosen (a local basis of sections), then this covariant derivative is represented by the
connection form In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Carta ...
''A'', a Lie algebra-valued
1-form In differential geometry, a one-form (or covector field) on a differentiable manifold is a differential form of degree one, that is, a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the t ...
, which is called the gauge potential in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
. This is evidently not an intrinsic but a frame-dependent quantity. The
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra ...
''F'', a Lie algebra-valued
2-form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, ...
that is an intrinsic quantity, is constructed from a connection form by : \mathbf = \mathrm\mathbf + \mathbf\wedge\mathbf where d stands for the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
and \wedge stands for the
wedge product A wedge is a triangular shaped tool, a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a fo ...
. (\mathbf is an element of the vector space spanned by the generators T^, and so the components of \mathbf do not commute with one another. Hence the wedge product \mathbf\wedge\mathbf does not vanish.) Infinitesimal gauge transformations form a Lie algebra, which is characterized by a smooth Lie-algebra-valued
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
, ε. Under such an
infinitesimal In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
gauge transformation, : \delta_\varepsilon \mathbf = varepsilon,\mathbf- \mathrm\varepsilon where cdot,\cdot/math> is the Lie bracket. One nice thing is that if \delta_\varepsilon X = \varepsilon X, then \delta_\varepsilon DX = \varepsilon DX where D is the covariant derivative : DX\ \stackrel\ \mathrmX + \mathbfX Also, \delta_\varepsilon \mathbf = varepsilon, \mathbf/math>, which means \mathbf transforms covariantly. Not all gauge transformations can be generated by
infinitesimal In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
gauge transformations in general. An example is when the
base manifold In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a pr ...
is a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
without boundary such that the
homotopy In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. ...
class of mappings from that
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
to the Lie group is nontrivial. See
instanton An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. M ...
for an example. The ''Yang–Mills action'' is now given by : \frac\int \operatorname \wedge F/math> where is the
Hodge star operator In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a Dimension (vector space), finite-dimensional orientation (vector space), oriented vector space endowed with a Degenerate bilinear form, nonde ...
and the integral is defined as in
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
. A quantity which is gauge-invariant (i.e.,
invariant Invariant and invariance may refer to: Computer science * Invariant (computer science), an expression whose value doesn't change during program execution ** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
under gauge transformations) is the
Wilson loop In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representati ...
, which is defined over any closed path, γ, as follows: : \chi^\left(\mathcal\left\\right) where ''χ'' is the
character Character or Characters may refer to: Arts, entertainment, and media Literature * ''Character'' (novel), a 1936 Dutch novel by Ferdinand Bordewijk * ''Characters'' (Theophrastus), a classical Greek set of character sketches attributed to Theoph ...
of a complex
representation Representation may refer to: Law and politics *Representation (politics), political activities undertaken by elected representatives, as well as other theories ** Representative democracy, type of democracy in which elected officials represent a ...
ρ and \mathcal represents the path-ordered operator. The formalism of gauge theory carries over to a general setting. For example, it is sufficient to ask that a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
have a
metric connection In mathematics, a metric connection is a connection (vector bundle), connection in a vector bundle ''E'' equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are p ...
; when one does so, one finds that the metric connection satisfies the Yang–Mills equations of motion.


Quantization of gauge theories

Gauge theories may be quantized by specialization of methods which are applicable to any
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
. However, because of the subtleties imposed by the gauge constraints (see section on Mathematical formalism, above) there are many technical problems to be solved which do not arise in other field theories. At the same time, the richer structure of gauge theories allows simplification of some computations: for example
Ward identities Ward may refer to: Division or unit * Hospital ward, a hospital division, floor, or room set aside for a particular class or group of patients, for example the psychiatric ward * Prison ward, a division of a penal institution such as a pris ...
connect different
renormalization Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of the ...
constants.


Methods and aims

The first gauge theory quantized was
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
(QED). The first methods developed for this involved gauge fixing and then applying
canonical quantization In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible. Historically, this was not quit ...
. The Gupta–Bleuler method was also developed to handle this problem. Non-abelian gauge theories are now handled by a variety of means. Methods for quantization are covered in the article on quantization. The main point to quantization is to be able to compute quantum amplitudes for various processes allowed by the theory. Technically, they reduce to the computations of certain
correlation functions The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms. D ...
in the
vacuum state In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. However, the quantum vacuum is not a simple ...
. This involves a
renormalization Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of the ...
of the theory. When the
running coupling In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between tw ...
of the theory is small enough, then all required quantities may be computed in
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
. Quantization schemes intended to simplify such computations (such as
canonical quantization In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible. Historically, this was not quit ...
) may be called perturbative quantization schemes. At present some of these methods lead to the most precise experimental tests of gauge theories. However, in most gauge theories, there are many interesting questions which are non-perturbative. Quantization schemes suited to these problems (such as
lattice gauge theory In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum ele ...
) may be called non-perturbative quantization schemes. Precise computations in such schemes often require
supercomputing A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instruc ...
, and are therefore less well-developed currently than other schemes.


Anomalies

Some of the symmetries of the classical theory are then seen not to hold in the quantum theory; a phenomenon called an anomaly. Among the most well known are: * The
scale anomaly A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory. In quantum field theory when we set Planck constant \hbar to zero we have only ...
, which gives rise to a ''running coupling constant''. In QED this gives rise to the phenomenon of the
Landau pole In physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the ph ...
. In
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
(QCD) this leads to
asymptotic freedom In quantum field theory, asymptotic freedom is a property of some gauge theory, gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (A ...
. * The
chiral anomaly In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is analogous to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have mor ...
in either chiral or vector field theories with fermions. This has close connection with
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
through the notion of
instanton An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. M ...
s. In QCD this anomaly causes the decay of a
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
to two
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s. * The
gauge anomaly In theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory. All gauge anomalie ...
, which must cancel in any consistent physical theory. In the
electroweak theory In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forc ...
this cancellation requires an equal number of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s and
lepton In particle physics, a lepton is an elementary particle of half-integer spin (Spin (physics), spin ) that does not undergo strong interactions. Two main classes of leptons exist: electric charge, charged leptons (also known as the electron-li ...
s.


Pure gauge

A pure gauge is the set of field configurations obtained by a
gauge transformation In the physics of gauge theory, gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant Degrees of freedom (physics and chemistry), degrees of freedom in field (physics), field variab ...
on the null-field configuration, i.e., a gauge transform of zero. So it is a particular "gauge orbit" in the field configuration's space. Thus, in the abelian case, where A_\mu (x) \rightarrow A'_\mu(x) = A_\mu(x)+ \partial_\mu f(x), the pure gauge is just the set of field configurations A'_\mu(x) = \partial_\mu f(x) for all .


See also

* Gauge principle *
Aharonov–Bohm effect The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanics, quantum-mechanical phenomenon in which an electric charge, electrically charged point particle, particle is affected by an elect ...
*
Coulomb gauge In the physics of gauge theory, gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant Degrees of freedom (physics and chemistry), degrees of freedom in field (physics), field variab ...
*
Electroweak theory In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forc ...
*
Gauge covariant derivative In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge ...
*
Gauge fixing In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct co ...
*
Gauge gravitation theory In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity. ''Gauge gravitation theory'' should not be confused with th ...
*
Gauge group (mathematics) A gauge group is a group of gauge symmetries of the Yang–Mills gauge theory of principal connections on a principal bundle. Given a principal bundle P\to X with a structure Lie group G, a gauge group is defined to be a group of its vertical ...
*
Kaluza–Klein theory In physics, Kaluza–Klein theory (KK theory) is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to ...
*
Lorenz gauge In electromagnetism, the Lorenz gauge condition or Lorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring \partial_\mu A^\mu = 0. The name is frequently confused with Hendrik Lorentz, who ...
*
Quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
*
Gluon field In theoretical particle physics, the gluon field is a four-vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in ...
*
Gluon field strength tensor In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum fiel ...
*
Quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
*
Electromagnetic four-potential An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. W ...
*
Electromagnetic tensor In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
*
Quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
*
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
*
Standard Model (mathematical formulation) This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group . The theory is commonly viewed as describing the fundamental set ...
*
Symmetry breaking In physics, symmetry breaking is a phenomenon where a disordered but Symmetry in quantum mechanics, symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible Bifurcation theory, bifurcatio ...
*
Symmetry in physics The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...
*
Charge (physics) In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group, and specificall ...
*
Symmetry in quantum mechanics Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in t ...
* Fock symmetry *
Ward identities Ward may refer to: Division or unit * Hospital ward, a hospital division, floor, or room set aside for a particular class or group of patients, for example the psychiatric ward * Prison ward, a division of a penal institution such as a pris ...
*
Yang–Mills theory Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special un ...
*
Yang–Mills existence and mass gap The Yang–Mills existence and mass gap problem is an unsolved problem in mathematical physics and mathematics, and one of the seven Millennium Prize Problems defined by the Clay Mathematics Institute, which has offered a prize of $1,000,000 U ...
*
1964 PRL symmetry breaking papers The 1964 ''PRL'' symmetry breaking papers were written by three teams who proposed related but different approaches to explain how mass could arise in local gauge theories. These three papers were written by: Robert Brout and François Englert; ...
*
Gauge theory (mathematics) In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of Connection (mathematics), connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should ...


References


Bibliography

; General readers : * Schumm, Bruce (2004)
Deep Down Things"> Deep Down Things
'. Johns Hopkins University Press. Esp. chpt. 8. A serious attempt by a physicist to explain gauge theory and the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
with little formal mathematics. * ; Texts : * * * * * ; Articles : * * * *


External links

*
Yang–Mills equations on DispersiveWiki

Gauge theories on Scholarpedia
{{DEFAULTSORT:Gauge theory Gauge theories Mathematical physics