Vector Potential
In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field \mathbf, a ''vector potential'' is a C^2 vector field \mathbf such that \mathbf = \nabla \times \mathbf. Consequence If a vector field \mathbf admits a vector potential \mathbf, then from the equality \nabla \cdot (\nabla \times \mathbf) = 0 (divergence of the curl is zero) one obtains \nabla \cdot \mathbf = \nabla \cdot (\nabla \times \mathbf) = 0, which implies that \mathbf must be a solenoidal vector field. Theorem Let \mathbf : \R^3 \to \R^3 be a solenoidal vector field which is twice continuously differentiable. Assume that \mathbf(\mathbf) decreases at least as fast as 1/\, \mathbf\, for \, \mathbf\, \to \infty . Define \mathbf (\mathbf) = \frac \int_ \frac \, d^3\mathbf where \nabla_y \times denotes curl with respect to variab ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Calculus
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow. Vector calculus was developed from the theory of quaternions by J. Willard Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901 book, '' Vector Analysis'', though earlier mathematicians such as Isaac Newton pioneered ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H-field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field (more precisely, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Potentials
Potential generally refers to a currently unrealized ability, in a wide variety of fields from physics to the social sciences. Mathematics and physics * Scalar potential, a scalar field whose gradient is a given vector field * Vector potential, a vector field whose curl is a given vector field * Potential function (other) * Potential variable (Boolean differential calculus) * Potential energy, the energy possessed by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors * Magnetic vector potential * Magnetic scalar potential (ψ) * Electric potential, the amount of work needed to move a unit positive charge from a reference point to a specific point inside the field without producing any acceleration * Electromagnetic four-potential, a relativistic vector function from which the electromagnetic field can be derived * Coulomb potential * Van der Waals force, distance-dependent interactions between atoms ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concepts In Physics
A concept is an abstract idea that serves as a foundation for more concrete principles, thoughts, and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, psychology, and philosophy, and these disciplines are interested in the logical and psychological structure of concepts, and how they are put together to form thoughts and sentences. The study of concepts has served as an important flagship of an emerging interdisciplinary approach, cognitive science. In contemporary philosophy, three understandings of a concept prevail: * mental representations, such that a concept is an entity that exists in the mind (a mental object) * abilities peculiar to cognitive agents (mental states) * Fregean senses, abstract objects rather than a mental object or a mental state Concepts are classified into a hierarchy, higher levels of which are termed "superordinate" and lower levels termed "subordinate". Additi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed And Exact Differential Forms
In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior derivative is zero (); and an exact form is a differential form, ''α'', that is the exterior derivative of another differential form ''β'', i.e. . Thus, an ''exact'' form is in the ''image (mathematics), image'' of ''d'', and a ''closed'' form is in the ''kernel (algebra), kernel'' of ''d'' (also known as null space). For an exact form ''α'', for some differential form ''β'' of degree one less than that of ''α''. The form ''β'' is called a "potential form" or "primitive" for ''α''. Since the exterior derivative of a closed form is zero, ''β'' is not unique, but can be modified by the addition of any closed form of degree one less than that of ''α''. Because , every exact form is necessarily closed. The question of whether ''every'' closed form is exact depends on the topology of the domain of interest. On a Contractible space, contractible do ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solenoidal Vector Field
In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: \nabla \cdot \mathbf = 0. A common way of expressing this property is to say that the field has no sources or sinks.This statement does not mean that the field lines of a solenoidal field must be closed, neither that they cannot begin or end. For a detailed discussion of the subject, see J. Slepian: "Lines of Force in Electric and Magnetic Fields", American Journal of Physics, vol. 19, pp. 87-90, 1951, and L. Zilberti: "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017. Properties The divergence theorem gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero: where d\mathbf is the outward normal to each surface el ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Vector Potential
In classical electromagnetism, magnetic vector potential (often denoted A) is the vector quantity defined so that its curl is equal to the magnetic field, B: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials ''φ'' and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields. Magnetic vector potential was independently introduced by Franz Ernst Neumann and Wilhelm Eduard Weber in 1845 and in 1846, respectively to discuss Ampère's circuital law. William Thomson also introduced the modern version of the vector potential in 1847, along with the formula relating it to the magnetic field. Unit conventions This article uses the SI system. In the SI system, the units of A are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Theorem Of Vector Calculus
In physics and mathematics, the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the sum of an irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. In physics, often only the decomposition of sufficiently smooth, rapidly decaying vector fields in three dimensions is discussed. It is named after Hermann von Helmholtz. Definition For a vector field \mathbf \in C^1(V, \mathbb^n) defined on a domain V \subseteq \mathbb^n, a Helmholtz decomposition is a pair of vector fields \mathbf \in C^1(V, \mathbb^n) and \mathbf \in C^1(V, \mathbb^n) such that: \begin \mathbf(\mathbf) &= \mathbf(\mathbf) + \mathbf(\mathbf), \\ \mathbf(\mathbf) &= - \nabla \Phi(\mathbf), \\ \nabla \cdot \mathbf(\mathbf) &= 0. \end Here, \Phi \in C^2(V, \mathbb) is a scalar potential, \nabla \Phi is its gradient, and \nabla \cdot \mathbf is the divergence of the vector field \math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauge Fixing
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a certain transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom. Although the unphysical axes in the space of detailed configurations are a fundamental property of the physical model, there is no special set of directions "perpendicular" to them. Hence there is an enormous amount of freedom involved in taking a "cross section" representing each physical configuration ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Forms
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a 1-form, -form, and can be integral, integrated over an interval [a,b] contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a Surface (mathematics), surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré's Lemma
In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior derivative is zero (); and an exact form is a differential form, ''α'', that is the exterior derivative of another differential form ''β'', i.e. . Thus, an ''exact'' form is in the ''image'' of ''d'', and a ''closed'' form is in the ''kernel'' of ''d'' (also known as null space). For an exact form ''α'', for some differential form ''β'' of degree one less than that of ''α''. The form ''β'' is called a "potential form" or "primitive" for ''α''. Since the exterior derivative of a closed form is zero, ''β'' is not unique, but can be modified by the addition of any closed form of degree one less than that of ''α''. Because , every exact form is necessarily closed. The question of whether ''every'' closed form is exact depends on the topology of the domain of interest. On a contractible domain, every closed form is exact by the Poincaré lemma. Mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Star Domain
In geometry, a set S in the Euclidean space \R^n is called a star domain (or star-convex set, star-shaped set or radially convex set) if there exists an s_0 \in S such that for all s \in S, the line segment from s_0 to s lies in S. This definition is immediately generalizable to any real, or complex, vector space. Intuitively, if one thinks of S as a region surrounded by a wall, S is a star domain if one can find a vantage point s_0 in S from which any point s in S is within line-of-sight. A similar, but distinct, concept is that of a radial set. Definition Given two points x and y in a vector space X (such as Euclidean space \R^n), the convex hull of \ is called the and it is denoted by \left , y\right~:=~ \left\ ~=~ x + (y - x) , 1 where z , 1:= \ for every vector z. A subset S of a vector space X is said to be s_0 \in S if for every s \in S, the closed interval \left _0, s\right\subseteq S. A set S is and is called a if there exists some point s_0 \in S such that S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |