Functional integration is a collection of results in
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
where the domain of an
integral
In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
is no longer a region of space, but a
space of functions. Functional integrals arise in
probability
Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
, in the study of
partial differential equations
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.
The function is often thought of as an "unknown" that solves the equation, similar to how ...
, and in the
path integral approach to the
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
of particles and fields.
In an ordinary integral (in the sense of
Lebesgue integration
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri L ...
) there is a function to be integrated (the integrand) and a region of space over which to integrate the function (the domain of integration). The process of integration consists of adding up the values of the integrand for each point of the domain of integration. Making this procedure rigorous requires a limiting procedure, where the domain of integration is divided into smaller and smaller regions. For each small region, the value of the integrand cannot vary much, so it may be replaced by a single value. In a functional integral the domain of integration is a space of functions. For each function, the integrand returns a value to add up. Making this procedure rigorous poses challenges that continue to be topics of current research.
Functional integration was developed by
Percy John Daniell in an article of 1919
and
Norbert Wiener
Norbert Wiener (November 26, 1894 – March 18, 1964) was an American computer scientist, mathematician, and philosopher. He became a professor of mathematics at the Massachusetts Institute of Technology ( MIT). A child prodigy, Wiener late ...
in a series of studies culminating in his articles of 1921 on
Brownian motion
Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
. They developed a rigorous method (now known as the
Wiener measure
In mathematics, the Wiener process (or Brownian motion, due to its historical connection with the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener. It is one of the best know ...
) for assigning a probability to a particle's random path.
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
developed another functional integral, the
path integral, useful for computing the quantum properties of systems. In Feynman's path integral, the classical notion of a unique trajectory for a particle is replaced by an infinite sum of classical paths, each weighted differently according to its classical properties.
Functional integration is central to quantization techniques in theoretical physics. The algebraic properties of functional integrals are used to develop series used to calculate properties in
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
and the
standard model
The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of particle physics.
Functional integration
Whereas standard
Riemann integration
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Gö ...
sums a function ''f''(''x'') over a continuous range of values of ''x'', functional integration sums a
functional ''G''
'f'' which can be thought of as a "function of a function" over a continuous range (or space) of functions ''f''. Most functional integrals cannot be evaluated exactly but must be evaluated using
perturbation methods. The formal definition of a functional integral is
However, in most cases the functions ''f''(''x'') can be written in terms of an infinite series of
orthogonal functions
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval (mathematics), interval as the domain of a function, domain, the bilinear form may be the ...
such as
, and then the definition becomes
which is slightly more understandable. The integral is shown to be a functional integral with a capital
. Sometimes the argument is written in square brackets