Fractional Crystallization (chemistry)
   HOME

TheInfoList



OR:

{{crystallization In chemistry, fractional crystallization is a stage-wise separation technique that relies on the liquid–solid phase change. This technique fractionates via differences in crystallization temperature and enables the purification of multi-component mixtures, as long as none of the constituents can act as solvents to the others. Due to the high selectivity of the solid–liquid equilibrium, very high purities can be achieved for the selected component.


Principle of separation

The crystallization process starts with the partial freezing of the initial
liquid Liquid is a state of matter with a definite volume but no fixed shape. Liquids adapt to the shape of their container and are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to th ...
mixture by slowly decreasing its temperature. The frozen solid phase subsequently has a different composition than the remaining liquid. This is the fundamental physical principle behind the melt fractionating process and quite comparable to
distillation Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixt ...
, which operates between a liquid and the gas phase. The
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s will grow on a cooled surface or alternatively as a suspension in the liquid. The heat released by the solidification process is withdrawn through a cooling surface or via the liquid. In theory, 100% of the product could be solidified and recovered. In practice, various strategies such as partial melting of the solid fraction (sweating) need to be applied in order to reach high purity levels.


Advantages

Fractional crystallization has various advantages over other separation technologies. First of all, it makes the purification of close boilers possible. This allows for very high purities even for challenging components. Furthermore, because of the lower operating
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, the thermal stress applied to the product is very low. This is in particular relevant for products that would otherwise
oligomerize In chemistry and biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: ...
or
degrade Degradation may refer to: Science * Degradation (geology), lowering of a fluvial surface by erosion * Degradation (telecommunications), of an electronic signal * Biodegradation of organic substances by living organisms * Environmental degradation ...
. Next, fractional crystallization is usually an inherently safe technology, because it operates at low pressures and low temperatures. Also, it does not use any
solvents A solvent (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for p ...
and is emission-free. Finally, since the
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. ...
of solidification is 3–6x lower than the heat of
evaporation Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
, the energy consumption is – in comparison to distillation – much lower.


Process steps

Fractional crystallization involves several key steps: # Crystallization: This is the initial phase where the material to be purified is cooled. As it cools, high-purity crystals begin to form on the cooling surface. The purity is achieved because the impurities tend to remain in the liquid phase rather than being incorporated into the crystal structure. # Draining: After the formation of the crystals, the next step is to remove the residual liquid that contains a higher concentration of impurities. This process of draining helps to separate the pure crystals from the impure liquid. # Sweating: This phase is a controlled partial melting process. It further purifies the product by melting only a small portion of the crystal. The melting causes the impurities trapped within or between the crystal structures to be released and separated. # Total Melting: In the final step, the remaining crystallized material, which is now the purified product, is completely melted. This total melting facilitates the removal of the pure substance from the crystallization equipment and prepares it for downstream processing.


Crystallizers

There are three differenct fractional crystallization technologies available:


Falling-film

In the falling-film crystallizer, crystals grow from a melt that forms a thin film along the inside of cooled tubes. A concurrent cooling medium flows on the outside of these tubes. This arrangement allows for reproducible and high transfer rates of heat, facilitating the growth of crystals from the falling film of melt. The solid–liquid separation of the resulting slurry can be accomplished using a wash column or a centrifuge. This technology is more complex than others but offers the advantage of high separation efficiency and very high purities. A typical feed has concentrations between 90–99%, which is purified up to 99.99 wt.-% or greater. For example, glacial
acrylic acid Acrylic acid (IUPAC: prop-2-enoic acid) is an organic compound with the formula CH2=CHCOOH. It is the simplest unsaturated carboxylic acid, consisting of a vinyl group connected directly to a carboxylic acid terminus. This colorless liquid has ...
, optical grade
bisphenol-A Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is Solubility, soluble in most common organic solvents, but has very poor solubility in water. BPA is produced on a ...
and battery grade
ethylene carbonate Ethylene carbonate (sometimes abbreviated EC) is the organic compound with the formula (CH2O)2CO. It is classified as the cyclic carbonate ester of ethylene glycol and carbonic acid. At room temperature (25 °C) ethylene carbonate is a tra ...
can be purified to their highest grade using a falling-film crystallizer.


Static

The static crystallizer allows crystals to grow from a stagnant melt, making it a versatile and robust technology. It can purify highly challenging products, including those with most challenging properties, such as high viscosities and high or low melting points. Examples of applications include isopulegol,
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, ...
,
wax Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give lo ...
and paraffins,
anthracene Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes, as a scintil ...
/
carbazole Carbazole is an aromatic Heterocyclic compound, heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is ...
and even satellite-grade
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
.


Suspension

In suspension crystallization, crystals are generated on a cooling surface and then scraped off to continue growing in size within a stirred vessel in suspension or slurry. The solid–liquid separation is performed either through a wash-column or a centrifuge. This method is more complex to operate, but offers the advantage of a high separation efficiency, which translates to considerable engery savings. Examples of applications include paraxylene, halogenated aromatics, and also aqueous feeds.


See also

* Cold Water Extraction *
Fractional crystallization (geology) Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous ro ...
*
Fractional freezing Fractional freezing is a process used in process engineering and chemistry to separate substances with different melting points. It can be done by partial melting of a solid, for example in zone refining of silicon or metals A metal ( ...
*
Laser-heated pedestal growth Laser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful Carbon-dioxide laser, CO2 or Nd:YAG laser. The laser and hence the zone melting, floating zone, i ...
*
Pumpable ice technology Pumpable ice technology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid ...
*
Recrystallization (chemistry) Recrystallization is a broad class of List of purification methods in chemistry , chemical purification techniques characterized by the dissolution of an impure sample in a solvent or solvent mixture, followed by some change in conditions that en ...
*
Seed crystal A seed crystal is a small piece of single crystal or polycrystal material from which a large crystal of typically the same material is grown in a laboratory. Used to replicate material, the use of seed crystal to promote growth avoids the otherwi ...
*
Single crystal In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no Grain boundary, grain bound ...


References


"Small Molecule Crystalization"
(
PDF Portable document format (PDF), standardized as ISO 32000, is a file format developed by Adobe Inc., Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, computer hardware, ...
) at
Illinois Institute of Technology The Illinois Institute of Technology, commonly referred to as Illinois Tech and IIT, is a Private university, private research university in Chicago, Illinois, United States. Tracing its history to 1890, the present name was adopted upon the m ...
website *
Fractional Solvent-Free Melt Crystallization
a
Chemical Engineering
website
Sulzer Fractional Crystallization Technologies
C. A. Soch, Fractional Crystallization, The Journal of Physical Chemistry 1898 2 (1), 43-50; DOI: 10.1021/j150001a002 Fractionation Phase transitions Methods of crystal growth