
A fluxion is the
instantaneous rate of change
In physics and the philosophy of science, instant refers to an infinitesimal interval in time, whose passage is instantaneous. In ordinary speech, an instant has been defined as "a point or very short space of time," a notion deriving from its etym ...
, or
gradient
In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
, of a
fluent (a time-varying quantity, or
function) at a given point. Fluxions were introduced by
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
to describe his form of a
time derivative
A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the value of the function. The variable denoting time is usually written as t.
Notation
A variety of notations are used to denote th ...
(a
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
with respect to time). Newton introduced the concept in 1665 and detailed them in his
mathematical
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
treatise, ''
Method of Fluxions''. Fluxions and fluents made up Newton's early
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
.
History
Fluxions were central to the
Leibniz–Newton calculus controversy, when Newton sent a letter to
Gottfried Wilhelm Leibniz
Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to ...
explaining them, but concealing his words in code due to his suspicion. He wrote:
The gibberish string was in fact a
hash code (by denoting the frequency of each letter) of the
Latin
Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
phrase ''Data æqvatione qvotcvnqve flventes qvantitates involvente, flvxiones invenire: et vice versa'', meaning: "Given an equation that consists of any number of flowing quantities, to find the fluxions: and vice versa".
Example
If the fluent is defined as
(where is time) the fluxion (derivative) at
is:
:
Here is an
infinitely small amount of time. So, the term is second order infinite small term and according to Newton, we can now ignore because of its second order infinite smallness comparing to first order infinite smallness of . So, the final equation gets the form:
:
He justified the use of as a non-zero quantity by stating that fluxions were a consequence of movement by an object.
Criticism
Bishop
George Berkeley
George Berkeley ( ; 12 March 168514 January 1753), known as Bishop Berkeley (Bishop of Cloyne of the Anglican Church of Ireland), was an Anglo-Irish philosopher, writer, and clergyman who is regarded as the founder of "immaterialism", a philos ...
, a prominent
philosopher
Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational an ...
of the time, denounced Newton's fluxions in his essay ''
The Analyst
''The Analyst'' (subtitled ''A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious ...
'', published in 1734. Berkeley refused to believe that they were accurate because of the use of the
infinitesimal
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
. He did not believe it could be ignored and pointed out that if it was zero, the consequence would be
division by zero
In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
. Berkeley referred to them as "ghosts of departed quantities", a statement which unnerved mathematicians of the time and led to the eventual disuse of infinitesimals in calculus.
Towards the end of his life Newton revised his interpretation of as
infinitely small, preferring to define it as approaching
zero
0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
, using a similar definition to the concept of
limit.
He believed this put fluxions back on safe ground. By this time, Leibniz's derivative (and his
notation
In linguistics and semiotics, a notation system is a system of graphics or symbols, Character_(symbol), characters and abbreviated Expression (language), expressions, used (for example) in Artistic disciplines, artistic and scientific disciplines ...
) had largely replaced Newton's fluxions and fluents, and remains in use today.
See also
*
History of calculus
Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East ...
*
Newton's notation
*
Hyperreal number
In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be finite if, and only if, , x, for some integer : A modern formalization of the reals that includes infinity and infinitesimals
*
Nonstandard analysis
The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
References
{{Isaac Newton, state=collapsed
Mathematical analysis
Differential calculus
History of calculus