
In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Euler function is given by
:
Named after
Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
, it is a model example of a
''q''-series and provides the prototypical example of a relation between
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many appl ...
and
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
.
Properties
The
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
in the
formal power series
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series (addition, subtraction, multiplication, division, partial sum ...
expansion for
gives the number of
partitions
Partition may refer to:
Computing Hardware
* Disk partitioning, the division of a hard disk drive
* Memory partition, a subdivision of a computer's memory, usually for use by a single job
Software
* Partition (database), the division of a ...
of ''k''. That is,
:
where
is the
partition function.
The Euler identity, also known as the
Pentagonal number theorem
In mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that
:\prod_^\left(1-x^\right)=\sum_^\left(-1\right)^x^=1+\sum_^\infty(-1)^k\left(x^+x^\right ...
, is
:
is a
pentagonal number
A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The ...
.
The Euler function is related to the
Dedekind eta function
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string t ...
as
:
The Euler function may be expressed as a
''q''-Pochhammer symbol:
:
The
logarithm
In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number to the base is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 o ...
of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about ''q'' = 0, yielding
:
which is a
Lambert series
In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form
:S(q)=\sum_^\infty a_n \frac .
It can be resumed formally by expanding the denominator:
:S(q)=\sum_^\infty a_n \sum_^\infty q^ = \sum_^\infty b_m ...
with coefficients -1/''n''. The logarithm of the Euler function may therefore be expressed as
:
where
-
/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ...(see
OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the ...
br>
A000203
On account of the identity
this may also be written as
:
Also if
and
, then
:
Special values
The next identities come from
Ramanujan's Notebooks:
:
:
:
:
Using the
Pentagonal number theorem
In mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that
:\prod_^\left(1-x^\right)=\sum_^\left(-1\right)^x^=1+\sum_^\infty(-1)^k\left(x^+x^\right ...
, exchanging sum and
integral
In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
, and then invoking complex-analytic methods, one derives
:
References
Notes
Other
*
{{Leonhard Euler
Number theory
Q-analogs
Leonhard Euler
km:អនុគមន៍អឺលែរ