Q-analogs
   HOME





Q-analogs
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. ''q''-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and dynamical systems results from the fact that many fractal patterns have the symme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are q-analog, ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left[\begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-exponential
The term ''q''-exponential occurs in two contexts. The q-exponential distribution, based on the Tsallis q-exponential is discussed in elsewhere. In combinatorial mathematics, a ''q''-exponential is a ''q''-analog of the exponential function, namely the eigenfunction of a ''q''-derivative. There are many ''q''-derivatives, for example, the classical ''q''-derivative, the Askey–Wilson operator, etc. Therefore, unlike the classical exponentials, ''q''-exponentials are not unique. For example, e_q(z) is the ''q''-exponential corresponding to the classical ''q''-derivative while \mathcal_q(z) are eigenfunctions of the Askey–Wilson operators. The ''q''-exponential is also known as the quantum dilogarithm. Definition The ''q''-exponential e_q(z) is defined as :e_q(z)= \sum_^\infty \frac = \sum_^\infty \frac = \sum_^\infty z^n\frac where _q is the ''q''-factorial and :(q;q)_n=(1-q^n)(1-q^)\cdots (1-q) is the ''q''-Pochhammer symbol. That this is the ''q''-analog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Binomial Coefficient
In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or ''q''-binomial coefficients) are ''q''-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as \binom nk_q or \beginn\\ k\end_q, is a polynomial in ''q'' with integer coefficients, whose value when ''q'' is set to a prime power counts the number of subspaces of dimension ''k'' in a vector space of dimension ''n'' over \mathbb_q, a finite field with ''q'' elements; i.e. it is the number of points in the finite Grassmannian \mathrm(k, \mathbb_q^n). Definition The Gaussian binomial coefficients are defined by: :_q = \frac where ''m'' and ''r'' are non-negative integers. If , this evaluates to 0. For , the value is 1 since both the numerator and denominator are empty products. Although the formula at first appears to be a rational function, it actually is a polynomial, because the division is exact in Z ''q''">/nowiki>''q''/nowiki> All ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Q-Pochhammer Symbol
In the mathematical field of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inversion (discrete Mathematics)
In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural total order, order. Definitions Inversion Let \pi be a permutation. There is an inversion of \pi between i and j if i \pi(j). The inversion is indicated by an ordered pair containing either the places (i, j) or the elements \bigl(\pi(i), \pi(j)\bigr). The #Example:_All_permutations_of_four_elements, inversion set is the set of all inversions. A permutation's inversion set using place-based notation is the same as the Permutation#Definition, inverse permutation's inversion set using element-based notation with the two components of each ordered pair exchanged. Likewise, a permutation's inversion set using element-based notation is the same as the inverse permutation's inversion set using place-based notation with the two components of each ordered pair exchanged. Inversions are usually defined for permutations, but may also be defined for sequences ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is  factorial, us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the Product (mathematics), product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book ''Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]