HOME

TheInfoList



OR:

Within the field of
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and phys ...
, the epitranscriptome includes all the biochemical modifications of the
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
(the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
) within a
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
. In analogy to
epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are " ...
that describes "functionally relevant changes to the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
that do not involve a change in the
nucleotide sequence A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are usua ...
", epitranscriptomics involves all functionally relevant changes to the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
that do not involve a change in the
ribonucleotide In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic m ...
sequence. Thus, the epitranscriptome can be defined as the ensemble of such functionally relevant changes. There are several types of RNA modifications that impact
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. ...
. These modifications happen to many types of cellular RNA including, but not limited to,
ribosomal RNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal ...
(rRNA),
transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino a ...
(tRNA), messenger RNA (mRNA), and
small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcr ...
(snRNA). The most common and well-understood mRNA modification at present is N6-Methyladenosine (m6A), which has been observed to occur an average of three times in every mRNA molecule. Currently, work is focused on determining the types of and location of RNA modifications, determining if these modification have function, and if so, what is their mechanism of action. Similar to the
epigenome An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational stranded epigenetic inheritance. Changes to the epigenome ...
, the epitranscriptome has "writers" and "erasers" that mark RNA and "readers" that translate those marks into function. One function that has been elucidated involves the
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
adenosine deaminase (ADAR), which acts on RNA. ADAR affects a series of cellular processes, including alternative splicing, microRNAs, the
innate immune system The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is th ...
, and leads to protein recoding especially for important receptors in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
.


Chemical Modifications of RNA


N6-Methyladenosine (m6A)

m6A describes the
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These t ...
of the
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seve ...
at position 6 in the
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside buildin ...
base within mRNA. Discovered in 1974, m6A is the most abundant
eukaryotic Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
mRNA modification; most mRNAs contain approximately three m6A residues. However, some mRNA transcripts do not contain any m6A at all, while others may have 10 or more. The term "epitranscriptome" was coined following transcriptome-wide mappings of m6A sites, but does not necessarily exclude other post-transcriptional mRNA modifications. How, and in response to what stimulus, the cell endogeneously regulates the level of m6A methylation remains unclear at present. However, it is known that the levels of this epitranscriptional mark are dynamically altered during embryonic development. Moreover, environmental stimuli such as stress can also alter the levels of m6A. The m6A mRNA methylomes of different eukaryotic organisms have two common characteristics. First of all, the mark is usually found in the R > A6AC >A>C>or RRm6ACH sequence. Secondly, this mark is enriched in specific regions of the
transcriptome The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The ...
; it is mostly found close to
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon ( nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in ...
s, in 3’-UTRs and in long internal
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequenc ...
s. Nevertheless, m6A levels vary between different RNAs within a cell and between different cell types of the same organism. The mechanisms controlling the addition of m6A to some types of RNA have been described, but others remain unknown.


Writers, Readers, and Erasers

In eukaryotes, the use of m6A on mRNA involves a
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ros ...
complex, commonly termed the 'Writer', that installs the methyl group. This m6A modification is recognized by special proteins known as 'Readers'. The number of readers varies across different organisms. Notably, in vertebrates, the presence of proteins categorized as 'Erasers' is suggested to facilitate the removal of m6A, which enables a dynamic regulation of m6A deposition on mRNAs. The m6A mark is added by a m6A
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ros ...
writer complex post-transcriptionally. This writer complex is composed of METTL3,
METTL14 Methyltransferase like 14 is a protein that in humans is encoded by the METTL14 gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ' ...
, Wilms tumor 1-associated protein (WTAP), KIAA1429 and
RBM15 Putative RNA-binding protein 15 is a protein that in humans is encoded by the ''RBM15'' gene. It is an RNA-binding protein RNA-binding proteins (often abbreviated as RBPs) are proteins that bind to the double or single stranded RNA in cells a ...
. METTL3 is the catalytic subunit, whereas METTL14 is involved in the stability of the complex and RNA recruitment. WTAP is also needed in aiding the recruitment of mRNA, whereas RBM15 and its paralog RBM15B are only involved in the recruitment of lncRNAs. The role RBM15 and RBM15B may have in recruiting other types of RNA to the methyltransferase complex remains unknown. The specific recognition sites of the writers are not known, but the minimal sequence required is 5’-Rm6AC-3’. METTL3 has been proposed to also be a "reader" of the m6A mark. This function is localized in the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
, where it promotes the recruitment of
eIF3 Eukaryotic initiation factor 3 (eIF3) is a multiprotein complex that functions during the initiation phase of eukaryotic translation. It is essential for most forms of cap-dependent and cap-independent translation initiation. In humans, eIF3 con ...
. Discovery of the METTL3 complex indicated that m6A installation might be a regulated process, which was pivotal for the advancement and interest in the field of epitranscriptomics. Members of the YTH domain protein family act as "readers" of m6A. The study of these proteins has been key in understanding the functions and effects of mRNA methylation. It has been shown that three members of the human YTH domain family of proteins have higher binding affinities to methylated mRNA. The YTH protein
YTHDF2 YTH N6-methyladenosine RNA binding protein 2 is a protein that in humans is encoded by the YTHDF2 gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ...
affects mRNA by directing methylated mRNA from the translational pool to mRNA decay sites. As a result, presence of m6A on mRNA is correlated with a shorter
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
than unmethylated mRNA. So far, two "erasers" of the m6A mark have been identified. ALKBH5 is a demethylase found in mammals that removes the methyl group of m6A. The second one is the fat mass and obesity associated protein ( FTO), a demethylase that converts m6A back to
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside buildin ...
. FTO preferentially demethylates the m6A found closer to the mRNA cap. This oxidative process has three steps and two intermediates: N6-hydroxymethyladenosine (hm6A) and N6-formyladenosine (f6A). FTO is most commonly found in nuclear speckles; however, in some species low levels of FTO can also be found in the cytoplasm. Dysfunctional FTO correlates with alterations in body weight and disease, while Alkbh5 knockout mice have impaired fertility. These two facts reflect how important the proper regulation of the m6A modification is for normal body function. Moreover, mutations in FTO can lead to developmental failures, brain atrophy and physiological disorders in adulthood.


Role in the life-cycle of mRNA

mRNA methylation is important throughout the entire life-cycle of the mRNA, starting with the alternative
polyadenylation Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In eu ...
(APA) of some transcripts. m6A sites are often located in the last
exon An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term ''exon'' refers to both the DNA sequence within a gene and to the corresponding sequenc ...
, mostly in the 3’ untranslated region (3'-UTR). The presence of m6A in the 3’-UTR promotes the use of the proximal APA site, resulting in a shorter 3’-UTR. Splicing of the pre-mRNA transcripts may be influenced by m6A, although this effect can vary across different biological systems. Furthermore, nuclear export of mature mRNAs depends on m6A; when the m6A "writers" are inhibited, there is a delay in the export of the mature mRNAs. However, normal nuclear export does not solely depend on m6A, other mRNA marks such as 5'-methylcytosine (m5C) are also involved. The m6A mark has a notable effect on translational dynamics. There are various ways in which m6A is involved in translational efficiency. For instance, this modification modulates multiple steps in the process of tRNA incorporation. On the one hand, it slows down GTP hydrolysis by
EF-Tu EF-Tu (elongation factor thermo unstable) is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to ...
by 12-fold and the
peptidyl transfer The peptidyl transferase is an aminoacyltransferase () as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The su ...
reaction by two-fold. It also causes a 1.5-fold increase in the amount of GTP hydrolyzed per peptidyl transfer, which indicates that a lot of proofreading is required. Moreover, because it is just a modified adenosine base, m6A base-pairs with
uridine Uridine (symbol U or Urd) is a glycosylated pyrimidine analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1-glycosidic bond. The analog is one of the five standard nucleosides which make up nucl ...
during decoding. However, the adenosine's methylation hinders tRNA accommodation and translation elongation. When a m6A-modified
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
interacts with its cognate tRNA (the tRNA with the anticodon that is complementary to a particular codon), it acts more like a near-cognate codon interaction instead of the cognate codon interaction. This can be seen in the delay in the tRNA accommodation, which is dependent upon both the position of the m6A in the mRNA codons and on how accurate the translation is. Overall, this m6A modification leads to a kinetic loss of a factor of 18. To summarize, translation-elongation dynamics are slower for codons with m6A and different locations of these modified nucleotides in the mRNA codons affect decoding dynamics in different ways. However, this mark can also increase translational efficiency. The m6A "reader" YTHDF1 induces the association of the modified mRNA with the ribosome. Furthermore, it also recruits the translation initiation factor eIF3 to the mRNA independently of METTL3. Additionally, eIF3 also acts as a "reader" of a m6A located in the 5’-UTR of the mRNA, which results in recruitment of the
40S The eukaryotic small ribosomal subunit (40S) is the smaller subunit of the eukaryotic 80S ribosomes, with the other major component being the large ribosomal subunit (60S). The "40S" and "60S" names originate from the convention that ribosomal pa ...
translational preinitiation complex. This interaction is involved in cap-independent translation, which happens during the cellular response to
heat shock The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. In a norm ...
stress. m6A methylation also modulates mRNA stability. The "reader" YTHDF2 binds to m6A-containing mRNAs and decreases their stability by recruiting them to
P-bodies P-bodies, or processing bodies are distinct foci formed by phase separation within the cytoplasm of the eukaryotic cell consisting of many enzymes involved in mRNA turnover. P-bodies are highly conserved structures and have been observed in s ...
, in a process called methylation-dependent mRNA decay. This process is needed to rapidly degrade
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
transcription factor transcripts, to enable the commitment of a pluripotent stem cell to a specific cell lineage. Reduced levels of m6A in mice embryos lead to embryonic lethality during the early stages of development.


Role of N6-Methyladenosine (m6A) in alternative splicing

Stem loop Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence whe ...
structures can sometimes be found in
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
s. m6A residues located in these stem-loops weaken base-pairing interactions within the stem, thus altering the structure of the mRNA. This phenomenon is known as m6A-Switch. The m6A mark has an important role in alternative splicing, since it increases the accessibility of
hnRNPC Heterogeneous nuclear ribonucleoproteins C1/C2 is a protein that in humans is encoded by the ''HNRNPC'' gene. It is abnormally expressed in fetuses of both IVF and ICSI, which may contribute to the increase risk of birth defects in these ART. Fu ...
to its binding site. The heterogeneous nuclear ribonucleoprotein C (hnRNPC) is a RNA-binding protein that complexes with both
heterogeneous nuclear RNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcripts designated to be mRNAs a ...
(hnRNA) and
pre-mRNA A primary transcript is the single-stranded ribonucleic acid (RNA) product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs. The primary transcripts designated to be mRNAs ...
to participate in
pre-mRNA processing Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, fu ...
. hnRNPC binds to a uridine-rich region in introns that can usually form stem-loops. The destabilization of the stem-loop exposes the hnRNPC binding site, which increases the accessibility of the protein to the region. Because hnRNPC must be bound to pre-mRNA in order to fulfill its function, increased accessibility means higher activity of hnRNPC. Therefore, m6A residues located in stem-loops of introns enhance the activity of hnRNPC, which results in increased alternative splicing. Evidence supporting this claim identified that decreased m6A levels in the transcriptome lead to significantly reduced hnRNPC binding. m6A also has additional roles in alternative splicing by acting as the binding site for YTHDC1 (YTHDC1 binds to m6A residues located in alternative exons). YTHDC1 has a double role in alternative splicing. First of all, it recruits the serine and arginine-rich splicing factor 3 (SRSF3), which promotes exon inclusion. In addition, YTHDC1 blocks binding of SRSF10, a protein involved in
exon-skipping In molecular biology, exon skipping is a form of RNA splicing used to cause cells to “skip” over faulty or misaligned sections (exons) of genetic code, leading to a truncated but still functional protein despite the genetic mutation. Mechani ...
. Due to the role of m6A in alternative splicing, pre-mRNAs have higher levels of m6A than mature mRNAs. Moreover, m6A is more abundant in mRNAs that undergo alternative splicing compared to genes that code a single
isoform A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some iso ...
. This is because alternatively spliced mRNAs are enriched in METTL3 binding sites. Splicing is affected in Mettl3
knock-out mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or " knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, resulting in increased frequency of exon skipping and intron retention. However, m6A is not a general unspecific splicing factor, it only participates in the alternative splicing of certain mRNAs and lncRNAs.


Other roles of m6A

m6A is not only found on mRNAs, various non-coding RNAs also contain this mark. For instance, XIST, the lncRNA that initiates
X-inactivation X-inactivation (also called Lyonization, after English geneticist Mary Lyon) is a process by which one of the copies of the X chromosome is inactivated in therian female mammals. The inactive X chromosome is silenced by being packaged into ...
, is enriched in m6A. These m6A are recognized and bound by the YTH domain protein YTHDC1. XIST mediated silencing of the X chromosome is negatively affected when XIST is not modified with m6A. RNA molecules containing m6A are involved in UV-induced DNA damage repair mechanisms. When DNA is damaged, poly(A)+ transcripts containing numerous m6A residues accumulate in the region. This facilitates the accessibility of DNA-repairing proteins, such as DNA polymerase K, so that they can fulfil their function.


Disease

Alterations in the pathways leading to the addition of the removal of the m6A mark result in impaired gene expression and cellular function, which can lead to disease. Normal m6A levels are altered in a number of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bl ...
s. Reduced m6A levels due to down regulation of METTL3 and/or METTL14 lead to the activation of a number of
oncogene An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
s, such as the gene encoding ADAM metallopeptidase domain 19 (ADAM19). Moreover, loss of m6A also results in the down regulation of tumor suppressors like cyclin-dependent kinase inhibitor 2A (CDKN2A) and breast cancer 2 (BRCA2). On the other hand, increased m6A levels inhibit
tumor progression Tumor progression is the third and last phase in tumor development. This phase is characterised by increased growth speed and invasiveness of the tumor cells. As a result of the progression, phenotypical changes occur and the tumor becomes more agg ...
in certain types of cancer. In addition,
single nucleotide polymorphisms In genetics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently larg ...
(SNPs) on the gene encoding FTO have been associated with increased risk of
breast The breast is one of two prominences located on the upper ventral region of a primate's torso. Both females and males develop breasts from the same embryological tissues. In females, it serves as the mammary gland, which produces and s ...
and
pancreatic cancer Pancreatic cancer arises when cells in the pancreas, a glandular organ behind the stomach, begin to multiply out of control and form a mass. These cancerous cells have the ability to invade other parts of the body. A number of types of panc ...
. Altered m6A levels also contribute to hypoxia-induced enrichment of breast cancer stem cells phenotype. All things considered, "writers" and "erasers" of the m6A mark may be good potential drug targets in
cancer therapy Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal ble ...
. Metabolic disorders are also affected by the m6A mark due to the role of FTO. Overexpression of FTO results in increased body and
fat mass Adipose tissue, body fat, or simply fat is a loose connective tissue composed mostly of adipocytes. In addition to adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular en ...
, whereas loss of FTO leads to a reduction in
lean body mass Lean body mass (LBM), sometimes conflated with ''fat-free mass'', is a component of body composition. Fat free mass (FFM) is calculated by subtracting body fat weight from total body weight: total body weight is lean plus fat. In equations: :LBM&n ...
. However, the mechanisms by which changes in FTO expression affect body and fat mass are not understood. Current research of the m6a epitranscriptome is continuing to uncover the implications of m6a and its post-physiological effects on ischemic stroke incidents. Microglial-mediated responses and contributing demethylases, including FTO and ALKBH5, appear to be a contributing factor for alterations of the cerebral m6a epitranscriptome. Mood disorders, such as major depressive disorder, have also been identified as disease processes associated with m6a epitranscriptome changes.


N1-methyladenosine (m1A)

N1-methyladenosine is a modified nucleoside in which a methyl group is added to N1 of the
adenosine Adenosine (symbol A) is an organic compound that occurs widely in nature in the form of diverse derivatives. The molecule consists of an adenine attached to a ribose via a β-N9-glycosidic bond. Adenosine is one of the four nucleoside buildin ...
base. This modification introduces a positive charge on the nitrogen atom to which the methyl group is added, because the modified nitrogen donates its
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC '' Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. L ...
to the carbon atom of the methyl group in order to form a
bond Bond or bonds may refer to: Common meanings * Bond (finance), a type of debt security * Bail bond, a commercial third-party guarantor of surety bonds in the United States * Chemical bond, the attraction of atoms, ions or molecules to form chemica ...
. N1-methyladenosine modification is thought to regulate tRNA and rRNA stability, as well as potentially alter protein-RNA interactions or RNA secondary structures. This modification results in the
melting Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which inc ...
of double-stranded RNA, due to alterations in the RNA structure. The N1-methyladenosine modification is less common than the m6A modification, with modified transcripts usually only containing a single m1A modification, whereas they may contain several m6A residues. Studies of these modifications have been slow to advance due to a lack of sound methodology to locate and identify them. A few methods, such as MeRIP-seq and m1A-ID-seq, have been developed, but the particular adenosine that is modified still cannot be identified. A
computation Computation is any type of arithmetic or non-arithmetic calculation that follows a well-defined model (e.g., an algorithm). Mechanical or electronic devices (or, historically, people) that perform computations are known as '' computers''. An esp ...
al tool based on the data generated from these methods called RAMPed has been developed to try to identify these particular modifications. Disease Modification of m1a is of interest regarding its considerable correlation with cancer biology and tumorigenesis.  Involvement of m1a may be organized under the categories of proliferation, invasion, cell death, tumor microenvironment, or cancer metabolism. Cancer cell proliferation has been found to be promoted by specific m1a “writers”. For example, the regulator TRMT6 has been found to be overexpressed in individuals with glioma, a cancer marked by the inappropriate proliferation of glial cells of the brain or spinal cord. Additionally, regulation of ALKBH3 has been found to support and bolster cancer cell invasiveness in certain breast and ovarian cancers.


5-methylcytosine (m5C)

5-methylcytosine, commonly abbreviated as "m5C", is a chemical modification first identified in tRNA. Since its initial identification, 5-methylcytosine has been found in a variety of different cellular structures ranging from a variety of RNAs and even DNA. Two different kinds of RNA m5C "writers" have been identified: NOP2/SUN RNA methyltransferase (NSUN) and DNA methyltransferase-2. It is important to note that DNMT-2 is a protein that falls under the
DNMT In biochemistry, the DNA methyltransferase (DNA MTase, DNMT) family of enzymes catalyze the transfer of a methyl group to DNA. DNA methylation serves a wide variety of biological functions. All the known DNA methyltransferases use S-adenosyl m ...
family, which contains three other DNMTs (1, 3a, and 3b) known to demonstrate methylation activity in relation to the genome. Uniquely, DNMT-2 is the only DNMT that has been confirmed to methylate both DNA and RNA, although its overall
DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts ...
function is significantly less than that of its counterparts. While these writers have been identified, as of now, there are no known m5C "erasers"; in a broader sense, this means that reamination, or the conversion of 5-methylcytosine back into cytosine, has not been observed in RNA. 5-methylcytosine modifications are typically found approximately 100 nucleotides downstream of translation initiation sites. This may provide some insight into the purpose of these modifications; for instance, this may indicate that these modifications are important for controlling the fate of the RNA, such as whether it will be translated or not in the case of mRNA. However, the exact purpose of the methylation at specific cytosines in RNA is currently unknown. One possibility may be that m5C may be associated with RNA transport, since the Aly/REF export factor is a known m5C binding protein. On the other hand, m5C modifications could possibly be associated with the regulation of genes involved in energy and lipid metabolism, through modulation of the overall RNA translational fate.


Adenosine-to-Inosine

Adenosine-to-Inosine (A-to-I) modifications were described well before the conception of epitranscriptomics. These modifications are very common in tissues and cells of the nervous system, and malfunctions in this deamination can result in a variety of different human diseases. A-to-I deamination has been shown to cause changes in the overall RNA structure or cause changes to the protein-coding mRNAs, although changes in codons and the amino acid they code for are not commonly seen. A-to-I RNA editing is described in more detail on the RNA editing page.


Queuosine

Queuine Queuine () (Q) is a hypermodified nucleobase found in the first (or wobble) position of the anticodon of tRNAs specific for Asn, Asp, His, and Tyr, in most eukaryotes and prokaryotes. Because it is utilized by all eukaryotes but produced exclusiv ...
(Q) is a modified nucleotide at position 34 in tRNA (queuosine is the name of the
nucleoside Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group. A nucleoside consists simply of a nucleobase (also termed a nitrogenous base) and a five-carbon sugar ( ribose or 2'-deoxyribose) whereas a nucleoti ...
, while queuine is the name of the nucleotide). Nucleotide modifications in tRNA are not uncommon, as tRNA is one of the most heavily modified types of RNA, and nearly 80 types of modified nucleotides have been identified. Queuosine is a very heavily modified version of
guanosine Guanosine (symbol G or Guo) is a purine nucleoside comprising guanine attached to a ribose ( ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphat ...
(G). Modifications in tRNA have the well-known ability to control and modulate gene expression. The regulation of gene expression typically comes from some structural changes to the stem-loop structure of the tRNA. The editing that tRNA undergoes may have developed as a response to rare codons, and tRNA counteracts frameshifts by utilizing the modified bases. Other similar modifications to nucleotides impact the ability of tRNA to initiate translation, thus impeding gene expression. This modification is particularly widespread and found amongst a variety of organisms, indicating that perhaps convergent evolution took place in the development of this nucleoside. Eukaryotic cells cannot synthesize queuosine, so they must rely on prokaryotes of the microbiome to produce and increase the availability of it within the body. Depleted levels of Q34 (queuine at position 34) are associated with the development of tumors.


2′-O-methylation

2'-O-methylation 2'-''O''-methylation is a common nucleoside modification of RNA, where a methyl group is added to the 2' hydroxyl of the ribose moiety of a nucleoside, producing a methoxy group. 2'-''O''-methylated nucleosides are mostly found in ribosomal RNA a ...
refers to the methylation of the 2' hydroxyl group of the ribose within an RNA nucleotide. 2'-O-methylation is found in the
five-prime cap In molecular biology, the five-prime cap (5′ cap) is a specially altered nucleotide on the 5′ end of some primary transcripts such as precursor messenger RNA. This process, known as mRNA capping, is highly regulated and vital in the creation o ...
of mRNAs in higher eukaryotes. It is involved in differentiating between self and non-self mRNA. Without the 2′-O-methylation mark the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as Tumor immunology, cancer cells and objects such ...
triggers higher levels of
type 1 interferon The type-I interferons (IFN) are cytokines which play essential roles in inflammation, immunoregulation, tumor cells recognition, and T-cell responses. In the human genome, a cluster of thirteen functional IFN genes is located at the 9p21.3 cyto ...
activity. While this modification is not currently known to be a response to any particular phenomenon, not everything is fully understood about the mechanisms of this modification due to the difficulty of studying small RNA molecules. However, the effect on RNA stability this modification has could be regulated to modulate transcript levels.


Pseudouridylation

Pseudouridine Pseudouridine (abbreviated by the Greek letter psi- Ψ) is an isomer of the nucleoside uridine in which the uracil is attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond. (In this configuration, uracil is sometimes referred ...
(Ψ, 5-ribosyluracil) is the most abundant RNA modification; in fact, at one time it was considered the "fifth nucleotide". This isomer of uridine is found in various types of RNA, such as snRNA, tRNA,
small nucleolar RNA In molecular biology, Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, ...
(snoRNA) and many others. Pseudouridine increases the stability of the modified RNA by making the sugar-phosphate backbone more rigid and by facilitating
base stacking Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensiona ...
interactions (pseudouridine contains an extra hydrogen bond donor). When it comes to
Watson-Crick base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
interactions, the pseudouridine-adenosine base pair is more stable than the uridine-adenosine base pair; therefore, pseudouridine increases stability. Apart from increasing RNA stability, this modification is also involved in regulation of translation. All eukaryotic
stop codon In molecular biology (specifically protein biosynthesis), a stop codon (or termination codon) is a codon ( nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in ...
s contain one uridine (UAA, UGA and UGA); conversion of this uridine to pseudouridine results in suppression of translational termination and generation of unexpected sense codons. The artificial process of pseudouridylation has an effect on the function of mRNA: it changes the genetic code by making non-canonical base pairing possible in the ribosome decoding center. Pseudouridylation reactions are catalyzed by enzymes that contain the pseudouridine synthase domain; 13 such enzymes have been identified in humans, which are called pseudouridine syntheses (PUS). These enzymes can be either RNA-dependent or RNA-independent depending on whether a small RNA is needed to guide the enzyme to its target or not. Additionally, different PUS enzymes work in different cell compartments. For instance, PUS4 (also known as TruB pseudouridine synthase family member 1, TRUB1) and PUS7, which are responsible for most of the mRNA pseudouridylation, are located in the nucleus or the cytoplasm. On the other hand, several PUS enzymes, such as
PUS1 tRNA pseudouridine synthase A is an enzyme that in humans is encoded by the ''PUS1'' gene. PUS1 converts uridine into pseudouridine after the nucleotide has been incorporated into RNA. Pseudouridine may have a functional role in tRNAs and may assi ...
and TRUB2 are located in the mitochondria, modifying a number of mitochondrial mRNAs (mt-mRNAs). In tRNA, PUS1 and PUS7 modify the second uridine in the UGUAR consensus sequence, as long as this sequence is located in a very structured region of the tRNA. To date, no pseudouridine erasers or readers have been identified. It is thought that pseudouridylation is most probably an irreversible process. Pseudouridine is most commonly found in tRNAs, with almost all tRNA molecules having at least one pseudouridine. Therefore, because the addition of pseudouridine happens during the normal processing of tRNA, it is not considered an epitranscriptomic mark. However, pseudouridine acts as an epigenetic mark in mRNAs and ncRNAs of the brain, since pseudouridylation in these two RNAs responds dynamically to stress and differentiation in the cell, giving reason to believe that pseudouridylation may act as an important regulatory mechanism for RNA function. Pseudouridylation in mRNA can be conserved, tissue-specific or inducible, which reflects plasticity and regulatory function. Furthermore, expression of TRBU1, which is mostly expressed in the brain, goes up due to fear conditioning. In addition, expression of the ncRNAs needed to guide RNA-dependent PUS enzymes also goes up in response to fear.


Pseudouridine detection and sequencing methods

There are three major techniques for the site-specific mapping of pseudouridine in RNA, called Pseudo-seq, Ψ-seq and PSI-seq. All these methods are based on the unique reaction between pseudouridine and N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT). The RNA to be analyzed is fragmented and incubated with CMCT. Even if CMCT can form covalent bonds with U, G and Ψ residues, only Ψ-CMC is resistant to alkaline hydrolysis (U-CMC and G-CMC get hydrolyzed). Next,
reverse transcription A reverse transcriptase (RT) is an enzyme used to generate complementary DNA (cDNA) from an RNA template, a process termed reverse transcription. Reverse transcriptases are used by viruses such as HIV and hepatitis B to replicate their genomes ...
is done to obtain a cDNA library, with the
cDNAs In genetics, complementary DNA (cDNA) is DNA synthesized from a single-stranded RNA (e.g., messenger RNA (mRNA) or microRNA (miRNA)) template in a reaction catalyzed by the enzyme reverse transcriptase. cDNA is often used to express a speci ...
terminating one nucleotide downstream the pseudouridine residue.
Next generation sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The ...
of the cDNA library will indicate where the modified pseudouridine residue is located in the RNA. In order to do this, two cDNA libraries are prepared, one in which the RNA has undergone CMC treatment and the other one without CMC treatment. Differences in the length of the reads between the two libraries will indicate where the Ψ residues are. Another method is called CeU-Seq, which uses a biotinylated derivative of CMCT. This enables the purification and enrichment of biotinylated transcripts (transcripts modified with pseudouridine) with
streptavidin Streptavidin is a 66.0 (tetramer) kDa protein purified from the bacterium ''Streptomyces avidinii''. Streptavidin homo-tetramers have an extraordinarily high affinity for biotin (also known as vitamin B7 or vitamin H). With a dissociation c ...
columns, therefore reducing the library size and increasing sensitivity. Other pseudouridine detection methods include site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (
SCARLET Scarlet may refer to: * Scarlet (cloth), a type of woollen cloth common in medieval England * Scarlet (color), a bright tone of red that is slightly toward orange, named after the cloth * Scarlet (dye), the dye used to give the cloth its color * ...
) and mass spectrometry.


Modifications specific to different types of RNA


Ribosomal RNA (rRNA)

Ribosomal RNA, or
rRNA Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from riboso ...
, forms the nucleic acid component of ribosomes. rRNA modifications take place in and around the
peptidyl transferase The peptidyl transferase is an aminoacyltransferase () as well as the primary enzymatic function of the ribosome, which forms peptide bonds between adjacent amino acids using tRNAs during the translation process of protein biosynthesis. The sub ...
center, the active site of the ribosome. Some modifications include pseudouridines, 2′-O-methylations on backbone sugars, and
methylated In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These te ...
bases. It is not well known what the biological effects of these modifications are on the rRNA molecule, but one hypothesis is that they help stabilize the structure and enhance the function of the ribosome, especially during ribosome formation. Moreover, these modifications may alter the chemical properties of the rRNA such that the correct tertiary structure is favored. 2'-O-methylation prevents backbone
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
; other noted modifications also seem to help with stabilizing rRNA
secondary structure Protein secondary structure is the three dimensional form of ''local segments'' of proteins. The two most common secondary structural elements are alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary struct ...
s and preventing damage to rRNA strands. 2'-O-methylation also helps to increase
base stacking Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensiona ...
forces, stabilizing the secondary and tertiary structure of rRNA even further. Collectively, these modifications in rRNA are indispensable to ribosomal function.


Transfer RNA (tRNA)

Transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino a ...
s, which are RNAs that participate in
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
, contain the greatest number of modifications of any type of RNA, with up to one-fourth of the nucleosides in these molecules containing some sort of modification in eukaryotes. There are several known reasons for the wide variety of modifications found in tRNA. First of all, such modifications allow for easier differentiation between different tRNA molecules, such as separating the initiator tRNAMet from elongator tRNAMet.. Moreover, they increase overall tRNA stability. Some studies have shown that the modifications of tRNA can be dynamic and adaptive to the changes of the environment. Examples include methylation of cytosine groups by tRNA methyltransferase (Trm4) in response to the depletion of nutrients in the body. The tRNA's cruciform structure is incredibly important to its overall function and such a complicated structure is maintained by post-transcriptional modifications. A primary example of this is the methylation of
guanosine Guanosine (symbol G or Guo) is a purine nucleoside comprising guanine attached to a ribose ( ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphat ...
at junctions within the tRNA structure. These methylguanosine impact the overall tertiary structure by disrupting any potential canonical hydrogen bonding (hydrogen bonds that are conventional Watson-Crick base pairs), thus creating a loop at the core of the tRNA. Other modifications are integral for creating and maintaining the extreme bends in the structure.


Messenger RNA (mRNA)

Messenger RNA is the bridge between the genetic code and the resulting proteins, as it is what carries the necessary information that gets translated into proteins. Modifications to the actual, physical genetic code are likely to be deleterious; therefore, minor modifications, such as methylation, done to mRNA are preferable (nevertheless, modifications are still seen throughout the genome). The four major types of modifications done to mRNA are N7-methylguanine (at the
5′ cap In molecular biology, the five-prime cap (5′ cap) is a specially altered nucleotide on the 5′ end of some primary transcripts such as precursor messenger RNA. This process, known as mRNA capping, is highly regulated and vital in the creation o ...
), N6-methyladenosine, 5-methylcytosine, and
2′-O-methylation 2'-''O''-methylation is a common nucleoside modification of RNA, where a methyl group is added to the 2' hydroxyl of the ribose moiety of a nucleoside, producing a methoxy group. 2'-''O''-methylated nucleosides are mostly found in ribosomal RNA ...
. The modification seen at the 5' cap perfectly demonstrates how modifications to mRNA can impact its function, as the 5' cap is necessary to initiate translation. Therefore, modifications, such as N7-methylguanine during RNA processing, to the 5' cap may effect the ability of the ribosome to initiate translation. It is important to note that not all modifications happening to the mRNA are epigenetic, some, like the N7-methylguanosine cap, are
RNA editing RNA editing (also RNA modification) is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms ...
. mRNA molecules demonstrate something known as "modification stoichiometry". Modification stoichiometry is when only a portion of transcripts have a specific modification at a particular modification site. Typically, under normal cell conditions, the modification stoichiometry is very low, there are a very few number of transcripts that have specific modifications. However, as cell conditions change, the fraction of modified transcripts can change as well. As with other types of RNA, modifications impact the overall structure of the mRNA. Altering its structure may cause the mRNA to take different paths. For example, a normal transcript might be fated to be translated; however, the introduction of a modified base can disrupt its structure and send it down a different path, and that particular transcript may now be targeted for degradation.


Short non-coding RNA (sncRNA) modifications

Modifications can also happen in short non-coding RNAs, including
small nuclear RNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcr ...
(snRNA) and
microRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. m ...
(miRNA). However, these modifications are less common than those in mRNA, tRNA, and rRNA.


Short nuclear RNA (snRNA)

Some ''trans-''spliced
snRNA Small nuclear RNA (snRNA) is a class of small RNA molecules that are found within the splicing speckles and Cajal bodies of the cell nucleus in eukaryotic cells. The length of an average snRNA is approximately 150 nucleotides. They are transcr ...
s have been observed to have a N2,N2,7-trimethylguanosine cap. This particular modification to the guanosine cap is rare in snRNAs.
Trans-splicing ''Trans''-splicing is a special form of RNA processing where exons from two different primary RNA transcripts are joined end to end and ligated. It is usually found in eukaryotes and mediated by the spliceosome, although some bacteria and archae ...
is a phenomenon in which exons from two different primary RNA transcripts are ligated together. These rare variants have been seen during development in '' C.elegans'' and are associated with
polysome A polyribosome (or polysome or ergosome) is a group of ribosomes bound to an mRNA molecule like “beads” on a “thread”. It consists of a complex of an mRNA molecule and two or more ribosomes that act to translate mRNA instructions into po ...
s. How this modification is regulated in certain cell types and the exact function of this modification remains largely unknown, although it has been speculated that this modification may help define a special subset of trimethylguanosine-regulated RNAs.


MicroRNA (miRNA)

Some
miRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miR ...
s in plants have been seen to contain
2'-O-methylation 2'-''O''-methylation is a common nucleoside modification of RNA, where a methyl group is added to the 2' hydroxyl of the ribose moiety of a nucleoside, producing a methoxy group. 2'-''O''-methylated nucleosides are mostly found in ribosomal RNA a ...
, a modification to the ribose sugar that is added by the
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Ros ...
HEN1. This modification is thought to protect the miRNA against polyuridylation, which would result in its subsequent degradation. In addition, pri-miRNAs have been shown to contain m6A. This reversible modification may affect their cellular localization and function during miRNA processing.


Long non-coding RNA (lncRNA)

The family of long
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non- ...
s includes a variety of different kinds of RNA, including, but not limited to,
circular RNA Circular RNA (or circRNA) is a type of single-stranded RNA which, unlike linear RNA, forms a covalently closed continuous loop. In circular RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together. This feature confe ...
(circRNA), nuclear lncRNA, long intergenic non-coding RNA, and
enhancer RNA Enhancer RNAs (eRNAs) represent a class of relatively long non-coding RNA molecules (50-2000 nucleotides) transcribed from the DNA sequence of enhancer regions. They were first detected in 2010 through the use of genome-wide techniques such as RNA ...
. The development of
next-generation sequencing Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation s ...
has made the study of lncRNA more accessible (because lncRNA is not very common in the cell relative to other types of RNA). Editing and modifications to lncRNA have demonstrated to result in changes in RNA expression and rate of mutation. 5-methylcytosine (m5C), N6-methyladenosine (m6A), and pseudouridine are the three most common and most studied modifications occurring in lncRNA. Modifications to the nucleotide structure are likely to impact the structure of lncRNAs and modulate their overall function. The study of the reversibility of these modifications is an active area of research. These modifications impact a variety of different qualities including the lncRNA's function and the initiation of translation. Modifications to lncRNAs have been demonstrated to impact where they localize within the cell and while complicated structures, such as the crucifix of tRNA, are not typically found in lncRNA, modifications may alter their structure and impact the overall function and pathway the lncRNA takes.


Viral epitranscriptomics

Viral epitranscriptomics is the field that studies RNA modifications in viral transcripts that do not affect the sequence of the transcript but that are functionally relevant. So far, the studies have been focused on viral transcripts of mammalian
virus A virus is a wikt:submicroscopic, submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and ...
es. Mammalian viral transcripts must function in a mammalian cell, so they must acquire the same epigenetic marks as the
host cell In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist ''guest'' (symbiont). The guest is typically provided with nourishment and shelter. Examples include a ...
. For this, viruses make use of the numerous mRNA modifying enzymes found in the host cells.


m6A in viral transcripts

The most widely described RNA modification in mammalian viruses is m6A, which was first identified in
Influenza virus ''Orthomyxoviridae'' (from Greek ὀρθός, ''orthós'' 'straight' + μύξα, ''mýxa'' ' mucus') is a family of negative-sense RNA viruses. It includes seven genera: '' Alphainfluenzavirus'', '' Betainfluenzavirus'', '' Gammainfluenzavirus' ...
mRNAs, in 1976. The epitranscriptomic analysis of viral transcripts has revealed that m6A levels in viral and cellular transcripts are similar. Nevertheless, in some viruses such as adenovirus-2, m6A levels are higher in viral mRNAs. As with cellular RNAs, m6A is predominantly added in the nucleus by METTL3, with the assistance of several cofactors such as METTL14, WTAP, KIAA1429 and RBM15/RMB15B. A recent study demonstrates the presence of m6A in the small T antigen of Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma, a fatal skin cancer. Studies of the viral m6A mark have mostly been conducted with
HIV The human immunodeficiency viruses (HIV) are two species of '' Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immu ...
. Despite the high mutagenic rate of this virus, m6A sites have been evolutionarily conserved. This is due to the fact that m6A is involved in regulating multiple stages in the HIV life-cycle. In addition to the normal functions m6A has in pre-mRNA splicing, nuclear export, mRNA stability and translation; this mark also inhibits the recognition of viral transcripts by
Toll-like receptor Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recogniz ...
s and RIG-1 receptors. As a result, m6A positively influences viral replication. On the other hand, HIV also regulates the addition of the m6A mark in a number of cellular mRNAs. For instance, 56 cellular transcripts that only contain m6A during HIV infection have been identified. The effect this mark has on cellular transcripts during the course of the viral infection remains unknown. Even if m6A-marked viral transcripts are involved in regulating gene expression of a number of different viruses, the mechanisms by which this happens have not been identified. To date, three possible models have been proposed. Although METTL3 and METTL14 are mostly localized in the nucleus, they can also be found in the cytoplasm, where they methylate the genomes and transcripts of cytoplasmic RNA viruses. As opposed to nuclear viruses, loss of m6A on
hepatitis C virus The hepatitis C virus (HCV) is a small (55–65 nm in size), enveloped, positive-sense single-stranded RNA virus of the family '' Flaviviridae''. The hepatitis C virus is the cause of hepatitis C and some cancers such as liver cancer (hepatoc ...
(HCV, a cytoplasmic RNA virus) increases the production of infectious HCV virions, which indicates that in this particular virus the m6A mark has a negative effect on virus production. Nevertheless, in other cytoplasmic RNA viruses such as
dengue virus ''Dengue virus'' (DENV) is the cause of dengue fever. It is a mosquito-borne, single positive-stranded RNA virus of the family ''Flaviviridae''; genus ''Flavivirus''. Four serotypes of the virus have been found, a reported fifth has yet to be c ...
and
yellow fever virus Yellow fever is a viral disease of typically short duration. In most cases, symptoms include fever, chills, loss of appetite, nausea, muscle pains – particularly in the back – and headaches. Symptoms typically improve within five days. In ...
, m6A sites have been selected for during evolution, suggesting that the m6A mark is beneficial for these viruses. Since m6A enhances viral replication, m6A can be used as a target for
antiviral therapy Antiviral drugs are a class of medication used for treating viral infections. Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses. Unlike most antibiotics, antiviral drugs do no ...
. The major challenge is to target this mark in viral transcripts without causing major effects to the host cells, as normally occurring cellular m6A marks will also be depleted. The S-adenosylhomocysteine (SAC) hydrolase inhibitor 3-dezaadenosine (DAA) can be used as an antiviral drug, because it inhibits the addition of m6A. However, it is yet to be determined whether this drug has any off-target effects.


Other viral transcript modifications

m6A is not the only RNA modification that can be found in viral RNAs. For instance, N6,2-O-dimethyladenosine (m6Am) can be found in influenza and
herpes simplex virus type 1 Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), also known by their taxonomical names ''Human alphaherpesvirus 1'' and ''Human alphaherpesvirus 2'', are two members of the human ''Herpesviridae'' family, a set of viruses that produce viral infe ...
, even though the effect this mark has on the life cycle of these viruses remains unknown. NAT10 mediated
acetylation : In organic chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed ''acetate esters'' or simply ''acetates''. Deacetylation is the opp ...
of cytidines on
HIV The human immunodeficiency viruses (HIV) are two species of '' Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immu ...
-1 RNA was recently reported. Another modification commonly found in coronaviruses,
flavivirus ''Flavivirus'' is a genus of positive-strand RNA viruses in the family '' Flaviviridae''. The genus includes the West Nile virus, dengue virus, tick-borne encephalitis virus, yellow fever virus, Zika virus and several other viruses which ma ...
es and
poxviruses ''Poxviridae'' is a family of double-stranded DNA viruses. Vertebrates and arthropods serve as natural hosts. There are currently 83 species in this family, divided among 22 genera, which are divided into two subfamilies. Diseases associated wit ...
(all of them are cytoplasmic viruses) is the 2'-O-methylation of ribose moieties. The addition of this mark is catalyzed by a viral methyltransferase. 2'-O-methylation binds to and inhibits Toll-like receptor 7 (TLR-7), which is involved in activating the production of
inflammatory cytokines Inflammatory may refer to: * Inflammation, a biological response to harmful stimuli * The word ''inflammatory'' is also used to refer literally to fire and flammability, and figuratively in relation to comments that are provocative and arouse p ...
. Moreover, this modification enables viral RNAs to evade the antiviral actions of the IFIT proteins, a family of
interferon Interferons (IFNs, ) are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten t ...
-induced proteins that limit viral replication.


MODOMICS

MODOMICS is a comprehensive
database In computing, a database is an organized collection of data stored and accessed electronically. Small databases can be stored on a file system, while large databases are hosted on computer clusters or cloud storage. The design of databases spa ...
that contains information about RNA modifications. MODOMICS provides the following information: the chemical structure of the modified RNAs, the RNA modifying pathways, the location of the modifications in the RNA sequences, the enzymes responsible for the modifications and liquid chromatography/mass spectrometry(LC/MS) data of the modified RNAs. As of November 2017, the database contained 163 different RNA modifications, as well as 340 different enzymes and
cofactors Cofactor may also refer to: * Cofactor (biochemistry), a substance that needs to be present in addition to an enzyme for a certain reaction to be catalysed * A domain parameter in elliptic curve cryptography, defined as the ratio between the orde ...
involved in the modifications. This database classifies RNA modifying pathways according to their starting point. The LC/MS data has been very useful in determining the specific mass of the modified RNAs, which facilitates the identification of the modification.


RMBase,ENCORE

The ENCyclOpedia of Rna Epitranscriptome (ENCORE) is an upgraded version o
RMBase
that a comprehensive epitranscriptome platform with tens of new software and tools, to decode the distribution pattern, metagene profile, biogenesis mechanisms, regulatory functions, interactome, evolutional conservation and novel reader proteins of more than 70 different types of RNA modifications by analyzing thousands of high-throughput sequencing data.


See also

*
Epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are " ...
*
RNA modification RNA editing (also RNA modification) is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms ...
*
RNA editing RNA editing (also RNA modification) is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms ...
* Epitranscriptomic sequencing *
Transcriptomics Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. H ...


References


Further reading

* * {{DEFAULTSORT:Epitranscriptomics Gene expression Molecular biology RNA