Electropositive Metal
   HOME

TheInfoList



OR:

Electronegativity, symbolized as '' χ'', is the tendency for an
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
of a given
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
to attract shared
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s (or
electron density Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typical ...
) when forming a
chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...
. An atom's electronegativity is affected by both its
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
and the distance at which its
valence electrons In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the
bond energy In chemistry, bond energy (''BE'') is one measure of the strength of a chemical bond. It is sometimes called the mean bond, bond enthalpy, average bond enthalpy, or bond strength. IUPAC defines bond energy as the average value of the gas-phase b ...
, and the sign and magnitude of a bond's
chemical polarity In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
, which characterizes a bond along the continuous scale from
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
to
ionic bonding Ionic bonding is a type of chemical bonding that involves the Coulomb's law, electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in io ...
. The loosely defined term electropositivity is the opposite of electronegativity: it characterizes an element's tendency to donate valence electrons. On the most basic level, electronegativity is determined by factors like the
nuclear charge In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges (e) an electron experiences by the nucleus. It is denoted by ''Z''eff. The term "effective" is used because the shi ...
(the more
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
an atom has, the more "pull" it will have on electrons) and the number and location of other electrons in the atomic shells (the more electrons an atom has, the farther from the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
the valence electrons will be, and as a result, the less positive charge they will experience—both because of their increased distance from the nucleus and because the other electrons in the lower energy core orbitals will act to
shield A shield is a piece of personal armour held in the hand, which may or may not be strapped to the wrist or forearm. Shields are used to intercept specific attacks, whether from close-ranged weaponry like spears or long ranged projectiles suc ...
the valence electrons from the positively charged nucleus). The term "electronegativity" was introduced by
Jöns Jacob Berzelius Baron Jöns Jacob Berzelius (; 20 August 1779 – 7 August 1848) was a Swedish chemist. Berzelius is considered, along with Robert Boyle, John Dalton, and Antoine Lavoisier, to be one of the founders of modern chemistry. Berzelius became a memb ...
in 1811, though the concept was known before that and was studied by many chemists including Avogadro. Despite its long history, an accurate scale of electronegativity was not developed until 1932, when
Linus Pauling Linus Carl Pauling ( ; February 28, 1901August 19, 1994) was an American chemist and peace activist. He published more than 1,200 papers and books, of which about 850 dealt with scientific topics. ''New Scientist'' called him one of the 20 gre ...
proposed an electronegativity scale that depends on bond energies, as a development of
valence bond theory In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of ...
. It has been shown to correlate with several other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed, and although there may be small differences in the numerical values of electronegativity, all methods show the same
periodic trends In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain Chemical element, elements when grouped by period (periodic table), period and/or Group (periodic table), group. They w ...
between elements. The most commonly used method of calculation is that originally proposed by Linus Pauling. This gives a
dimensionless quantity Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into unit of measurement, units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that a ...
, commonly referred to as the Pauling scale (''χ''r), on a relative scale running from 0.79 to 3.98 (
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
 = 2.20). When other methods of calculation are used, it is conventional (although not obligatory) to quote the results on a scale that covers the same range of numerical values: this is known as electronegativity in ''Pauling units''. As it is usually calculated, electronegativity is not a property of an atom alone, but rather a property of an atom in a
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
. Even so, the electronegativity of an atom is strongly correlated with the
first ionization energy In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as :X(g) ...
. The electronegativity is slightly negatively correlated (for smaller electronegativity values) and rather strongly positively correlated (for most and larger electronegativity values) with the
electron affinity The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. ::X(g) + e− → X−(g) + energy This differs by si ...
. It is to be expected that the electronegativity of an element will vary with its chemical environment, but it is usually considered to be a transferable property, that is to say, that similar values will be valid in a variety of situations.
Cesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals ...
is the least electronegative element (0.79);
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
is the most (3.98).


Methods of calculation


Pauling electronegativity

Pauling Pauling is a surname. People, places, and organizations with it include: *Linus Pauling **Paulingite **Pauling's rules **4674 Pauling **Linus Pauling Institute **Linus Pauling Library **Linus Pauling Award **Condon State Airport, Pauling Field *Av ...
first proposed the concept of electronegativity in 1932 to explain why the
covalent bond A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
between two different atoms (A–B) is stronger than the average of the A–A and the B–B bonds. According to
valence bond theory In chemistry, valence bond (VB) theory is one of the two basic theories, along with molecular orbital (MO) theory, that were developed to use the methods of quantum mechanics to explain chemical bonding. It focuses on how the atomic orbitals of ...
, of which Pauling was a notable proponent, this "additional stabilization" of the
heteronuclear A heteronuclear molecule is a molecule composed of atoms of more than one chemical element. For example, a molecule of water (H2O) is heteronuclear because it has atoms of two different elements, hydrogen (H) and oxygen (O). Similarly, a heter ...
bond is due to the contribution of ionic
canonical form In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an obje ...
s to the bonding. The difference in electronegativity between atoms A and B is given by: , \chi_ - \chi_, = ()^ \sqrt where the dissociation energies, ''E''d, of the A–B, A–A and B–B bonds are expressed in
electronvolt In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an Voltage, electric potential difference of one volt in vacuum ...
s, the factor (eV)− being included to ensure a dimensionless result. Hence, the difference in Pauling electronegativity between hydrogen and
bromine Bromine is a chemical element; it has chemical symbol, symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between th ...
is 0.73 (dissociation energies: H–Br, 3.79 eV; H–H, 4.52 eV; Br–Br 2.00 eV) As only differences in electronegativity are defined, it is necessary to choose an arbitrary reference point to construct a scale. Hydrogen was chosen as the reference, as it forms covalent bonds with a large variety of elements: its electronegativity was fixed first at 2.1, later revised to 2.20. It is also necessary to decide which of the two elements is the more electronegative (equivalent to choosing one of the two possible signs for the square root). This is usually done using "chemical intuition": in the above example,
hydrogen bromide Hydrogen bromide is the inorganic compound with the formula . It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temper ...
dissolves in water to form H+ and Br− ions, so it may be assumed that bromine is more electronegative than hydrogen. However, in principle, since the same electronegativities should be obtained for any two bonding compounds, the data are overdetermined, and the signs are unique once a reference point has been fixed (usually, for H or F). To calculate Pauling electronegativity for an element, it is necessary to have data on the dissociation energies of at least two types of covalent bonds formed by that element. A. L. Allred updated Pauling's original values in 1961 to take account of the greater availability of thermodynamic data, and it is these "revised Pauling" values of the electronegativity that are most often used. The essential point of Pauling electronegativity is that there is an underlying, quite accurate, semi-empirical formula for dissociation energies, namely: E_() = \frac 2 + (\chi_ - \chi_)^2 or sometimes, a more accurate fit E_() =\sqrt+1.3(\chi_ - \chi_)^2 These are approximate equations but they hold with good accuracy. Pauling obtained the first equation by noting that a bond can be approximately represented as a quantum mechanical superposition of a covalent bond and two ionic bond states. The covalent energy of a bond is approximate, by quantum mechanical calculations, the
geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
of the two energies of covalent bonds of the same molecules, and there is additional energy that comes from ionic factors, i.e. polar character of the bond. The geometric mean is approximately equal to the
arithmetic mean In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
—which is applied in the first formula above—when the energies are of a similar value, e.g., except for the highly electropositive elements, where there is a larger difference of two dissociation energies; the geometric mean is more accurate and almost always gives positive excess energy, due to ionic bonding. The square root of this excess energy, Pauling notes, is approximately additive, and hence one can introduce the electronegativity. Thus, it is these semi-empirical formulas for bond energy that underlie the concept of Pauling electronegativity. The formulas are approximate, but this rough approximation is good and gives the right intuition, with the notion of the polarity of the bond and some theoretical grounding in quantum mechanics. The electronegativities are then determined to best fit the data. In more complex compounds, there is an additional error since electronegativity depends on the molecular environment of an atom. Also, the energy estimate can be only used for single, not for multiple bonds. The
enthalpy of formation In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, wi ...
of a molecule containing only single bonds can subsequently be estimated based on an electronegativity table, and it depends on the constituents and the sum of squares of differences of electronegativities of all pairs of bonded atoms. Such a formula for estimating energy typically has a relative error on the order of 10% but can be used to get a rough qualitative idea and understanding of a molecule.


Mulliken electronegativity

Robert S. Mulliken Robert Sanderson Mulliken Note Longuet-Higgins' amusing title "Selected ploddings of Robert S Mulliken" for reference B238 1965 on page 354 of this Biographical Memoir. The title should be "Selected papers of Robert S Mulliken." (June 7, 1896 †...
proposed that the
arithmetic mean In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
of the first
ionization energy In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, Ion, positive ion, or molecule. The first ionization energy is quantitatively expressed as : ...
(Ei) and the
electron affinity The electron affinity (''E''ea) of an atom or molecule is defined as the amount of energy released when an electron attaches to a neutral atom or molecule in the gaseous state to form an anion. ::X(g) + e− → X−(g) + energy This differs by si ...
(Eea) should be a measure of the tendency of an atom to attract electrons: \chi = \frac 2 As this definition is not dependent on an arbitrary relative scale, it has also been termed absolute electronegativity, with the units of kilojoules per mole or
electronvolt In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an Voltage, electric potential difference of one volt in vacuum ...
s. However, it is more usual to use a linear transformation to transform these absolute values into values that resemble the more familiar Pauling values. For ionization energies and electron affinities in electronvolts, \chi = 0.187(E_ + E_) + 0.17 \, and for energies in kilojoules per mole, \chi = (1.97\times 10^)(E_ + E_) + 0.19. The Mulliken electronegativity can only be calculated for an element whose electron affinity is known. Measured values are available for 72 elements, while approximate values have been estimated or calculated for the remaining elements. The Mulliken electronegativity of an atom is sometimes said to be the negative of the
chemical potential In thermodynamics, the chemical potential of a Chemical specie, species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potent ...
. By inserting the energetic definitions of the ionization potential and electron affinity into the Mulliken electronegativity, it is possible to show that the Mulliken chemical potential is a finite difference approximation of the electronic energy with respect to the number of electrons., i.e., \mu(\rm Mulliken) = -\chi(\rm Mulliken) = -\frac 2


Allred–Rochow electronegativity

A. Louis Allred and Eugene G. Rochow considered that electronegativity should be related to the charge experienced by an electron on the "surface" of an atom: The higher the charge per unit area of atomic surface the greater the tendency of that atom to attract electrons. The
effective nuclear charge In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges (e) an electron experiences by the nucleus. It is denoted by ''Z''eff. The term "effective" is used because the shi ...
, ''Z''eff, experienced by
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s can be estimated using
Slater's rules In quantum chemistry, Slater's rules provide numerical values for the effective nuclear charge in a many-electron atom. Each electron is said to experience less than the actual nuclear charge, because of shielding or screening by the other elec ...
, while the surface area of an atom in a molecule can be taken to be proportional to the square of the
covalent radius The covalent radius, ''r''cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Ã…), with 1 Ã… = 100 pm. In principle, the sum of the two cova ...
, ''r''cov. When ''r''cov is expressed in
picometre The picometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: pm) or picometer (American spelling) is a unit of length in the International System of Units (SI), equal to , or one trillionth of ...
s, \chi = 3590 + 0.744


Sanderson electronegativity equalization

R.T. Sanderson has also noted the relationship between Mulliken electronegativity and atomic size and has proposed a method of calculation based on the reciprocal of the atomic volume. With a knowledge of bond lengths, Sanderson's model allows the estimation of bond energies in a wide range of compounds. Sanderson's model has also been used to calculate molecular geometry, ''s''-electron energy,
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which atomic nucleus, nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near and far field, near field) and respond by producing ...
spin-spin coupling constants and other parameters for organic compounds. This work underlies the concept of electronegativity equalization, which suggests that electrons distribute themselves around a molecule to minimize or equalize the Mulliken electronegativity. This behavior is analogous to the equalization of chemical potential in macroscopic thermodynamics.


Allen electronegativity

Perhaps the simplest definition of electronegativity is that of Leland C. Allen, who has proposed that it is related to the average energy of the
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s in a free atom, \chi = where ''ε''s,p are the one-electron energies of s- and p-electrons in the free atom and ''n''s,p are the number of s- and p-electrons in the valence shell. The one-electron energies can be determined directly from spectroscopic data, and so electronegativities calculated by this method are sometimes referred to as spectroscopic electronegativities. The necessary data are available for almost all elements, and this method allows the estimation of electronegativities for elements that cannot be treated by the other methods, e.g.
francium Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called '' actinium K'' after the natural decay chain in which it appears), has a half-l ...
, which has an Allen electronegativity of 0.67.The widely quoted Pauling electronegativity of 0.7 for francium is an extrapolated value of uncertain provenance. The Allen electronegativity of caesium is 0.66. However, it is not clear what should be considered to be valence electrons for the d- and f-block elements, which leads to an ambiguity regarding their electronegativities calculated by the Allen method. On this scale,
neon Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
has the highest electronegativity of all elements, followed by
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
,
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
.


Correlation of electronegativity with other properties

The wide variety of methods of calculation of electronegativities, which all give results that correlate well with one another, is one indication of the number of chemical properties that might be affected by electronegativity. The most obvious application of electronegativities is in the discussion of
bond polarity In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
, for which the concept was introduced by Pauling. In general, the greater the difference in electronegativity between two atoms the more polar the bond that will be formed between them, with the atom having the higher electronegativity being at the negative end of the dipole. Pauling proposed an equation to relate the "ionic character" of a bond to the difference in electronegativity of the two atoms, although this has fallen somewhat into disuse. Several correlations have been shown between infrared stretching frequencies of certain bonds and the electronegativities of the atoms involved: However, this is not surprising as such stretching frequencies depend in part on bond strength, which enters into the calculation of Pauling electronegativities. More convincing are the correlations between electronegativity and chemical shifts in
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic f ...
or isomer shifts in
Mössbauer spectroscopy Mössbauer spectroscopy is a spectroscopic technique based on the Mössbauer effect. This effect, discovered by Rudolf Mössbauer (sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly recoil-free emission and a ...
(see figure). Both these measurements depend on the s-electron density at the nucleus, and so is a good indication that the different measures of electronegativity describe "the ability of an atom in a molecule to attract electrons to itself".


Trends in electronegativity


Periodic trends

In general, electronegativity increases on passing from left to right along a period and decreases on descending a group. Hence,
Fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
is the most electronegative of the elements (not counting
Noble gas The noble gases (historically the inert gases, sometimes referred to as aerogens) are the members of Group (periodic table), group 18 of the periodic table: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) and, in some ...
es), whereas
Cesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals ...
is the least electronegative, at least of those elements for which substantial data is available. There are some exceptions to this general rule.
Gallium Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875, elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
and Germanium have higher electronegativities than Aluminium and Silicon, respectively, because of the d-block contraction. Elements of the Period 4 element, fourth period immediately after the first row of the transition metals have unusually small atomic radii because the 3d-electrons are not effective at shielding the increased nuclear charge, and smaller atomic size correlates with higher electronegativity (see #Allred–Rochow electronegativity, Allred-Rochow electronegativity and #Sanderson electronegativity equalization, Sanderson electronegativity above). The anomalously high electronegativity of lead, in particular, when compared to thallium and bismuth, is an artifact of electronegativity varying with oxidation state: its electronegativity conforms better to trends if it is quoted for the +2 state with a Pauling value of 1.87 instead of the +4 state.


Variation of electronegativity with oxidation number

In inorganic chemistry, it is common to consider a single value of electronegativity to be valid for most "normal" situations. While this approach has the advantage of simplicity, it is clear that the electronegativity of an element is ''not'' an invariable atomic property and, in particular, increases with the oxidation state of the element. Allred used the Pauling method to calculate separate electronegativities for different oxidation states of the handful of elements (including tin and lead) for which sufficient data were available. However, for most elements, there are not enough different covalent compounds for which bond dissociation energies are known to make this approach feasible. The chemical effects of this increase in electronegativity can be seen both in the structures of oxides and halides and in the acidity of oxides and oxoacids. Hence Chromium trioxide, CrO3 and Dimanganese heptoxide, Mn2O7 are acidic oxides with low melting points, while Chromium(III) oxide, Cr2O3 is amphoteric oxide, amphoteric and Manganese(III) oxide, Mn2O3 is a completely basic oxide. The effect can also be seen in the Acid dissociation constant, dissociation constants p''K''a of the oxoacids of chlorine. The effect is much larger than could be explained by the negative charge being shared among a larger number of oxygen atoms, which would lead to a difference in p''K''a of log10() = −0.6 between hypochlorous acid and perchloric acid. As the oxidation state of the central chlorine atom increases, more electron density is drawn from the oxygen atoms onto the chlorine, diminishing the partial negative charge of individual oxygen atoms. At the same time, the positive partial charge on the hydrogen increases with a higher oxidation state. This explains the observed increased acidity with an increasing oxidation state in the oxoacids of chlorine.


Electronegativity and hybridization scheme

The electronegativity of an atom changes depending on the hybridization of the orbital employed in bonding. Electrons in s orbitals are held more tightly than electrons in p orbitals. Hence, a bond to an atom that employs an sp''x'' hybrid orbital for bonding will be more heavily polarized to that atom when the hybrid orbital has more s character. That is, when electronegativities are compared for different hybridization schemes of a given element, the order holds (the trend should apply to Isovalent hybridization, non-integer hybridization indices as well).


Group electronegativity

In organic chemistry, electronegativity is associated more with different functional groups than with individual atoms. The terms group electronegativity and substituent electronegativity are used synonymously. However, it is common to distinguish between the inductive effect and the resonance effect, which might be described as σ- and π-electronegativities, respectively. There are several linear free-energy relationships that have been used to quantify these effects, of which the Hammett equation is the best known. Kabachnik Parameters are group electronegativities for use in organophosphorus chemistry.


Electropositivity

Electropositivity is a measure of an element's ability to donate electrons, and therefore form cations, positive ions; thus, it is antipode to electronegativity. Mainly, this is an attribute of metals, meaning that, in general, the greater the metallic character of an chemical element, element the greater the electropositivity. Therefore, the alkali metals are the most electropositive of all. This is because they have a single electron in their outer shell and, as this is relatively far from the nucleus of the atom, it is easily lost; in other words, these metals have low ionization energy, ionization energies.Electropositivity
" Microsoft Encarta Online Encyclopedia 2009. (Archived 2009-10-31).
While electronegativity increases along Period (periodic table), periods in the periodic table and decreases down Periodic table group, groups, electropositivity ''decreases'' along periods (from left to right) and ''increases'' down groups. This means that elements in the upper right of the periodic table of elements (oxygen, sulfur, chlorine, etc.) will have the greatest electronegativity, and those in the lower left (rubidium, cesium, and francium) the greatest electropositivity.


See also

* Chemical polarity * Electron affinity * Electronegativities of the elements (data page) * Ionization energy * Metallic bonding * Miedema's model * Orbital hybridization * Oxidation state * Periodic table


References


Bibliography

* *


External links

*
WebElements
lists values of electronegativities by a number of different methods of calculation
Video explaining electronegativity

Electronegativity Chart
a summary listing of the electronegativity of each element along with an interactive periodic table {{Authority control Chemical properties Chemical bonding Dimensionless numbers of chemistry