Electrification Of Catalytic Processes
   HOME

TheInfoList



OR:

An electrocatalyst is a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be
heterogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, i ...
such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall
half reaction In chemistry, a half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the r ...
. Major challenges in electrocatalysts focus on
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s.


Background and theory

An electrocatalyst lowers the
activation energy In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. The activation energy (''E''a) of a reaction is measured in kilojoules per mole (k ...
required for an electrochemical reaction. Some electrocatalysts change the potential at which oxidation and reduction processes occur. In other cases, an electrocatalyst can impart selectivity by favoring specific chemical interaction at an electrode surface. Given that electrochemical reactions occur when electrons are passed from one chemical species to another, favorable interactions at an electrode surface increase the likelihood of electrochemical transformations occurring, thus reducing the potential required to achieve these transformations. Electrocatalysts can be evaluated according to activity, stability, and selectivity. The activity of electrocatalysts can be assessed quantitatively by the current density is generated, and therefore how fast a reaction is taking place, for a given applied potential. This relationship is described with the
Tafel equation The Tafel equation is an equation in electrochemical kinetics relating the rate of an Electrochemistry, electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical ...
. In assessing the stability of electrocatalysts, the a key parameter is
turnover number In chemistry, the term "turnover number" has two distinct meanings. In enzymology, the turnover number () is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a g ...
(TON). The selectivity of electrocatalysts refers to the product distribution. Selectivity can be quantitatively assessed through a selectivity coefficient, which compares the response of the material to the desired analyte or substrate with the response to other interferents. In many electrochemical systems, including
galvanic cell A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a ...
s,
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s and various forms of
electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; ...
s, a drawback is that they can suffer from high activation barriers. The energy diverted to overcome these activation barriers is transformed into heat. In most exothermic combustion reactions this heat would simply propagate the reaction catalytically. In a redox reaction, this heat is a useless byproduct lost to the system. The extra energy required to overcome kinetic barriers is usually described in terms of low faradaic efficiency and high
overpotential In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly r ...
s. In these systems, each of the two
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a varie ...
s and its associated
half-cell In electrochemistry, a half-cell is a structure that contains a conductive electrode and a surrounding conductive electrolyte separated by a naturally occurring Helmholtz double layer. Chemical reactions within this layer momentarily pump electri ...
would require its own specialized electrocatalyst. Half-reactions involving multiple steps, multiple electron transfers, and the evolution or consumption of gases in their overall chemical transformations, will often have considerable kinetic barriers. Furthermore, there is often more than one possible reaction at the surface of an electrode. For example, during the
electrolysis of water Electrolysis of water is using electricity to Water splitting, split water into oxygen () and hydrogen () gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture ...
, the anode can oxidize water through a two electron process to
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
or a four electron process to oxygen. The presence of an electrocatalyst could facilitate either of the reaction pathways.


Homogeneous electrocatalysts

A homogeneous electrocatalyst is one that is present in the same phase of matter as the reactants, for example, a water-soluble coordination complex catalyzing an electrochemical conversion in solution. This technology is not practiced commercially, but is of research interest.


Synthetic coordination complexes

Many
coordination complex A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of chemical bond, bound molecules or ions, that are in turn known as ' ...
es catalyze electrochemical reactions, although few have achieved commercial success. Well investigated processes include the
hydrogen evolution reaction Hydrogen evolution reaction (HER) is a chemical reaction that yields H2. The conversion of protons to H2 requires reducing equivalents and usually a catalyst. In nature, HER is catalyzed by hydrogenase enzymes which rely on iron- and nickel-based c ...
.


Electrification of catalytic processes

There is much interest in replacing traditional chemical catalysis with electrocatalysis. In such a scheme electrons supplied by an electrode are reagents. The topic is a theme within the area of
green energy Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Definitions of sustainable energy usually look at its effects on the environment, the economy, and so ...
, because the electrons can be sourced from
renewable resource A renewable resource (also known as a flow resource) is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of t ...
s. Several conversions that use hydrogen gas could be transformed into
electrochemical Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
processes that use protons. This technology remains economically noncompetitive. Another example is found in the area of
nitrogen fixation Nitrogen fixation is a chemical process by which molecular dinitrogen () is converted into ammonia (). It occurs both biologically and abiological nitrogen fixation, abiologically in chemical industry, chemical industries. Biological nitrogen ...
. The traditional
Haber-Bosch process The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the ammonia production, production of ammonia. It converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using finely di ...
produces
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
by
hydrogenation Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or Saturated ...
of
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
gas: : In the electrified version, the
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
is provided in the form of
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and electrons: : The ammonia represents an energy source since it is combustable. In this way electrification can be seen as a means for energy storage. Another process attracting much effort is the electrochemical reduction of carbon dioxide.


Enzymes

Some
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s can function as electrocatalysts.
Nitrogenase Nitrogenases are enzymes () that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only fa ...
, an enzyme that contains a MoFe cluster, can be leveraged to fix atmospheric nitrogen, i.e. convert nitrogen gas into molecules such as ammonia. Immobilizing the protein onto an electrode surface and employing an electron mediator greatly improves the efficiency of this process. The effectiveness of bioelectrocatalysts generally depends on the ease of electron transport between the active site of the enzyme and the electrode surface. Other enzymes provide insight for the development of synthetic catalysts. For example,
formate dehydrogenase Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase () or to a cytochrome in formate:ferricytochrome-b1 o ...
, a nickel-containing enzyme, has inspired the development of synthetic complexes with similar molecular structures for use in CO2 reduction.
Microbial fuel cell Microbial fuel cell (MFC) is a type of bioelectrochemical fuel cell system also known as micro fuel cell that generates electric current by diverting electrons produced from the microbial oxidation of reduced compounds (also known as fuel or ele ...
s are another way that biological systems can be leveraged for electrocatalytic applications. Microbial-based systems leverage the metabolic pathways of an entire organism, rather than the activity of a specific enzyme, meaning that they can catalyze a broad range of chemical reactions. Microbial fuel cells can derive current from the oxidation of substrates such as glucose, and be leveraged for processes such as CO2 reduction.


Heterogeneous electrocatalysts

A heterogeneous electrocatalyst is one that is present in a different phase of matter from the reactants, for example, a solid surface catalyzing a reaction in solution. Different types of heterogeneous electrocatalyst materials are shown above in green. Since heterogeneous electrocatalytic reactions need an electron transfer between the solid catalyst (typically a metal) and the electrolyte, which can be a liquid solution but also a polymer or a ceramic capable of ionic conduction, the reaction kinetics depend on both the catalyst and the electrolyte as well as on the
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Inter ...
between them. The nature of the electrocatalyst surface determines some properties of the reaction including rate and selectivity.


Bulk materials

Electrocatalysis can occur at the surface of some bulk materials, such as platinum metal. Bulk metal surfaces of gold have been employed for the decomposition methanol for
hydrogen production Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Article in press. Most hydrogen is ''gray hydrogen'' made through steam methane reforming. In this process, ...
. Water electrolysis is conventionally conducted at inert bulk metal electrodes such as platinum or iridium. The activity of an electrocatalyst can be tuned with a chemical modification, commonly obtained by alloying two or more metals. This is due to a change in the electronic structure, especially in the d band which is considered to be responsible for the catalytic properties of noble metals.


Nanomaterials


Nanoparticles

A variety of
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
materials have been demonstrated to promote various electrochemical reactions, although none have been commercialized. These catalysts can be tuned with respect to their size and shape, as well as the surface strain. Also, higher reaction rates can be achieved by precisely controlling the arrangement of surface atoms: indeed, in nanometric systems, the number of available reaction sites is a better parameter than the exposed surface area in order to estimate electrocatalytic activity. Sites are the positions where the reaction could take place; the likelihood of a reaction to occur in a certain site depends on the electronic structure of the catalyst, which determines the
adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
energy of the reactants together with many other variables not yet fully clarified. According to the
TSK model In chemistry, the terrace ledge kink (TLK) model, which is also referred to as the terrace step kink (TSK) model, describes the thermodynamics of crystal surface formation and transformation, as well as the energetics of surface defect formation. It ...
, the catalyst surface atoms can be classified as terrace, step or kink atoms according to their position, each characterized by a different
coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion ...
. In principle, atoms with lower coordination number (kinks and defects) tend to be more reactive and therefore adsorb the reactants more easily: this may promote kinetics but could also depress it if the adsorbing species isn't the reactant, thus inactivating the catalyst. Advances in nanotechnology make it possible to surface engineer the catalyst so that just some desired crystal planes are exposed to reactants, maximizing the number of effective reaction sites for the desired reaction. To date, a generalized surface dependence mechanism cannot be formulated since every surface effect is strongly reaction-specific. A few classifications of reactions based on their surface dependence have been proposed but there are still many exceptions that do not fall into them.


= Particle size effect

= The interest in reducing as much as possible the costs of the catalyst for electrochemical processes led to the use of fine catalyst powders since the
specific surface area Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, (with units of m2/kg or m2/g). Alternatively, it may be defined as SA per solid or bulk volume (units of m2/m3 or m−1). I ...
increases as the average particle size decreases. For instance, most common PEM fuel cells and electrolyzers design is based on a polymeric membrane charged in platinum nanoparticles as an electrocatalyst (the so-called
platinum black Platinum black (Pt black) is a fine powder of platinum with good catalytic properties. The name of platinum black is due to its black color. It is used in many ways; as a thin film electrode, a fuel cell membrane catalyst, or as a catalytic igniti ...
). Although the
surface area to volume ratio The surface-area-to-volume ratio or surface-to-volume ratio (denoted as SA:V, SA/V, or sa/vol) is the ratio between surface area and volume of an object or collection of objects. SA:V is an important concept in science and engineering. It is use ...
is commonly considered to be the main parameter relating electrocatalyst size with its activity, to understand the particle-size effect, several more phenomena need to be taken into account: * '' Equilibrium shape'': for any given size of a nanoparticle there is an equilibrium shape which exactly determines its crystal planes * ''Reaction sites relative number'': a given size for a nanoparticle corresponds to a certain number of surface atoms and only some of them host a reaction site * ''
Electronic structure Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
'': below a certain size, the
work function In solid-state physics, the work function (sometimes spelled workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" ...
of a nanoparticle changes and its band structure fades away * '' Defects'': the crystal lattice of a small nanoparticle is perfect; thus, reactions enhanced by defects as reaction sites get slowed down as the particle size decreases * ''Stability'': small nanoparticles have the tendency to lose mass due to the diffusion of their atoms towards bigger particles, according to the
Ostwald ripening Ostwald ripening is a phenomenon observed in solid solutions and liquid sols that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or s ...
phenomenon * ''Capping agents'': in order to stabilize nanoparticles it is necessary a capping layer, therefore part of their surface is unavailable for reactants * ''
Support Support may refer to: Arts, entertainment, and media * Supporting character * Support (art), a solid surface upon which a painting is executed Business and finance * Support (technical analysis) * Child support * Customer support * Income Su ...
'': nanoparticles are often fixed onto a support in order to stay in place, therefore part of their surface is unavailable for reactants


Carbon-based materials

Carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s and
graphene Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
-based materials can be used as electrocatalysts. The carbon surfaces of graphene and carbon nanotubes are well suited to the adsorption of many chemical species, which can promote certain electrocatalytic reactions. In addition, their conductivity means they are good electrode materials. Carbon nanotubes have a very high surface area, maximizing surface sites at which electrochemical transformations can occur. Graphene can also serve as a platform for constructing composites with other kinds of
nanomaterials Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science ...
such as single atom catalysts. Because of their conductivity, carbon-based materials can potentially replace metal electrodes to perform metal-free electrocatalysis.


Framework materials

Metal—organic frameworks (MOFs), especially conductive frameworks, can be used as electrocatalysts for processes such as CO2 reduction and
water splitting Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy. A version of water splitti ...
. MOFs provide potential active sites at both metal centers and organic ligand sites. They can also be functionalized, or encapsulate other materials such as nanoparticles. MOFs can also be combined with carbon-based materials to form electrocatalysts. Covalent organic frameworks (COFs), particularly those that contain metals, can also serve as electrocatalysts. COFs constructed from cobalt porphyrins demonstrated the ability to reduce carbon dioxide to carbon monoxide. However, many MOFs are known unstable in chemical and electrochemical conditions, making it difficult to tell if MOFs are actually catalysts or precatalysts. The real active sites of MOFs during electrocatalysis need to be analyzed comprehensively.


Research on electrocatalysis


Water splitting / Hydrogen evolution

Hydrogen and oxygen can be combined through by the use of a fuel cell. In this process, the reaction is broken into two half reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. Useful energy can be obtained from the thermal heat of this reaction through an
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
with an upper efficiency of 60% (for compression ratio of 10 and specific heat ratio of 1.4) based on the
Otto Otto is a masculine German given name and a surname. It originates as an Old High German short form (variants '' Audo'', '' Odo'', '' Udo'') of Germanic names beginning in ''aud-'', an element meaning "wealth, prosperity". The name is recorded fr ...
thermodynamic cycle A thermodynamic cycle consists of linked sequences of thermodynamic processes that involve heat transfer, transfer of heat and work (physics), work into and out of the system, while varying pressure, temperature, and other state variables within t ...
. It is also possible to combine the hydrogen and oxygen through redox mechanism as in the case of a
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
. In this process, the reaction is broken into two half-reactions which occur at separate electrodes. In this situation the reactant's energy is directly converted to electricity. The standard reduction potential of hydrogen is defined as 0V, and frequently referred to as the
standard hydrogen electrode In electrochemistry, the standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 ° ...
(SHE). HER can be promoted by many catalysts.


Carbon dioxide reduction

Electrocatalysis for CO2 reduction is not practiced commercially but remains a topic of research. The reduction of CO2 into useable products is a potential way to combat
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
. Electrocatalysts can promote the reduction of carbon dioxide into methanol and other useful fuel and stock chemicals. The most valuable reduction products of CO2 are those that have a higher energy content, meaning that they can be reused as fuels. Thus, catalyst development focuses on the production of products such as methane and methanol. Homogeneous catalysts, such as enzymes and synthetic coordination complexes have been employed for this purpose. A variety of nanomaterials have also been studied for CO2 reduction, including carbon-based materials and framework materials.


Ethanol-powered fuel cells

Aqueous solutions of methanol can decompose into CO2 hydrogen gas, and water. Although this process is thermodynamically favored, the activation barrier is extremely high, so in practice this reaction is not typically observed. However, electrocatalysts can speed up this reaction greatly, making methanol a possible route to hydrogen storage for fuel cells. Electrocatalysts such as gold, platinum, and various carbon-based materials have been shown to effectively catalyze this process. An electrocatalyst of
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
and
rhodium Rhodium is a chemical element; it has symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isot ...
on carbon backed tin-dioxide nanoparticles can break carbon bonds at room temperature with only
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
as a by-product, so that
ethanol Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula . It is an Alcohol (chemistry), alcohol, with its formula also written as , or EtOH, where Et is the ps ...
can be oxidized into the necessary hydrogen ions and electrons required to create electricity.


Chemical synthesis

Electrocatalysts are used to promote certain chemical reactions to obtain synthetic products. Graphene and graphene oxides have shown promise as electrocatalytic materials for synthesis. Electrocatalytic methods also have potential for polymer synthesis. Electrocatalytic synthesis reactions can be performed under a constant current, constant potential, or constant cell-voltage conditions, depending on the scale and purpose of the reaction.


Advanced oxidation processes in water treatment

Water treatment systems often require the degradation of hazardous compounds. These treatment processes are dubbed Advanced oxidation processes, and are key in destroying byproducts from disinfection, pesticides, and other hazardous compound. There is an emerging effort to enable these processes to destroy more tenacious compounds, especially
PFAS Per- and polyfluoroalkyl substances (also PFAS, PFASs, and informally referred to as "forever chemicals") are a group of synthetic organofluorine chemical compounds that have multiple fluorine atoms attached to an alkyl chain; there are 7 millio ...


Additional reading

*


See also

*
Electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between Electric potential, electrical potential difference and identifiable chemical change. These reactions involve Electron, electrons moving via an electronic ...
*
Catalysis Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
*
Electrolysis of water Electrolysis of water is using electricity to Water splitting, split water into oxygen () and hydrogen () gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture ...
* Non-faradaic electrochemical modification of catalytic activity *
Tafel equation The Tafel equation is an equation in electrochemical kinetics relating the rate of an Electrochemistry, electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical ...


References

{{Reflist Electrochemistry Catalysis