ERCC1
   HOME

TheInfoList



OR:

DNA excision repair protein ERCC-1 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''ERCC1''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
and DNA recombination. Many aspects of these two
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
products are described together here because they are partners during DNA repair. The ERCC1-XPF nuclease is an essential activity in the pathway of DNA nucleotide excision repair (NER). The ERCC1-XPF nuclease also functions in pathways to repair
double-strand breaks DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...
in DNA, and in the repair of “crosslink” damage that harmfully links the two DNA strands. Cells with disabling mutations in ''ERCC1'' are more sensitive than normal to particular DNA damaging agents, including ultraviolet (UV) radiation and to chemicals that cause crosslinking between DNA strands. Genetically engineered mice with disabling mutations in ERCC1 have defects in DNA repair, accompanied by metabolic stress-induced changes in physiology that result in premature aging. Complete deletion of ERCC1 is incompatible with viability of mice, and no human individuals have been found with complete (homozygous) deletion of ERCC1. Rare individuals in the human population harbor inherited mutations that impair the function of ERCC1. When the normal genes are absent, these mutations can lead to human syndromes, including
Cockayne syndrome Cockayne syndrome (CS), also called Neill-Dingwall syndrome, is a rare and fatal autosomal recessive neurodegenerative disorder characterized by growth failure, impaired development of the nervous system, abnormal sensitivity to sunlight ( photo ...
(CS) and COFS. ''ERCC1'' and ''ERCC4'' are the gene names assigned in mammalian genomes, including the human genome (''Homo sapiens''). Similar genes with similar functions are found in all eukaryotic organisms.


Gene

The genomic DNA for ''ERCC1'' was the first human DNA repair gene to be isolated by molecular cloning. The original method was by transfer of fragments of the human genome to ultraviolet light (UV)-sensitive mutant cell lines derived from
Chinese hamster ovary cell Chinese hamster ovary (CHO) cells are a family of immortalized cell lines derived from epithelial cells of the ovary of the Chinese hamster, often used in biological and medical research and commercially in the production of recombinant therap ...
s. Reflecting this cross-species genetic complementation method, the gene was called “Excision repair cross-complementing 1”. Multiple independent complementation groups of Chinese hamster ovary (CHO) cells were isolated, and this gene restored UV resistance to cells of complementation group 1. The human ''ERCC1'' gene encodes the ERCC1 protein of 297 amino acids with a molecular mass of about 32,500 daltons. Genes similar to ''ERCC1'' with equivalent functions (orthologs) are found in other eukaryotic genomes. Some of the most studied gene orthologs include ''RAD10'' in the budding yeast ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
'', and ''swi10+'' in the fission yeast ''
Schizosaccharomyces pombe ''Schizosaccharomyces pombe'', also called "fission yeast", is a species of yeast used in traditional brewing and as a model organism in molecular and cell biology. It is a unicellular eukaryote, whose cells are rod-shaped. Cells typically meas ...
''.


Protein

One ERCC1 molecule and one XPF molecule bind together, forming an ERCC1-XPF heterodimer which is the active nuclease form of the enzyme. In the ERCC1–XPF heterodimer, ERCC1 mediates DNA– and protein–protein interactions. XPF provides the endonuclease active site and is involved in DNA binding and additional protein–protein interactions. The ERCC4/XPF protein consists of two conserved domains separated by a less conserved region in the middle. The
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amin ...
region has homology to several conserved domains of DNA helicases belonging to superfamily II, although XPF is not a DNA helicase. The
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, carboxy tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When t ...
region of XPF includes the active site residues for nuclease activity. Most of the ERCC1 protein is related at the sequence level to the C-terminus of the XPF protein, but residues in the nuclease domain are not present. A DNA binding “helix-hairpin-helix” domain at the C-terminus of each protein. By primary sequence and protein structural similarity, the ERCC1-XPF nuclease is a member of a broader family of structure specific DNA nucleases comprising two subunits. Such nucleases include, for example, the MUS81- EME1 nuclease.


Structure-specific nuclease

The ERCC1–XPF complex is a structure-specific endonuclease. ERCC1-XPF does not cut DNA that is exclusively single-stranded or double-stranded, but it cleaves the DNA phosphodiester backbone specifically at junctions between double-stranded and single-stranded DNA. It introduces a cut in double-stranded DNA on the 5′ side of such a junction, about two nucleotides away. This structure-specificity was initially demonstrated for RAD10-RAD1, the yeast orthologs of ERCC1 and XPF. The hydrophobic helix–hairpin–helix motifs in the C-terminal regions of ERCC1 and XPF interact to promote dimerization of the two proteins. There is no catalytic activity in the absence of dimerization. Indeed, although the catalytic domain is within XPF and ERCC1 is catalytically inactive, ERCC1 is indispensable for activity of the complex. Several models have been proposed for binding of ERCC1–XPF to DNA, based on partial structures of relevant protein fragments at atomic resolution. DNA binding mediated by the helix-hairpin-helix domains of ERCC1 and XPF domains positions the heterodimer at the junction between double-stranded and single-stranded DNA.


Nucleotide excision repair

During nucleotide excision repair, several protein complexes cooperate to recognize damaged DNA and locally separate the DNA helix for a short distance on either side of the site of a DNA damage. The ERCC1–XPF nuclease incises the damaged DNA strand on the 5′ side of the lesion. During NER, the ERCC1 protein interacts with the XPA protein to coordinate DNA and protein binding.


DNA double-strand break repair

Mammalian cells with mutant ERCC1–XPF are moderately more sensitive than normal cells to agents (such as ionizing radiation) that cause double-stranded breaks in DNA. Particular pathways of both homologous recombination repair and non-homologous end-joining rely on ERCC1-XPF function. The relevant activity of ERCC1–XPF for both types of double-strand break repair is the ability to remove non-homologous 3′ single-stranded tails from DNA ends before rejoining. This activity is needed during a single-strand annealing subpathway of homologous recombination. Trimming of 3’ single-stranded tail is also needed in a mechanistically distinct subpathway of non-homologous end-joining, dependent on the Ku proteins. Homologous integration of DNA, an important technique for genetic manipulation, is dependent on the function of ERCC1-XPF in the host cell.


DNA interstrand crosslink repair

Mammalian cells carrying mutations in ERCC1 or XPF are especially sensitive to agents that cause DNA interstrand crosslinks. Interstrand crosslinks block the progression of DNA replication, and structures at blocked DNA replication forks provide substrates for cleavage by ERCC1-XPF. Incisions may be made on either side of the crosslink on one DNA strand to unhook the crosslink and initiate repair. Alternatively, a double-strand break may be made in the DNA near the ICL, and subsequent homologous recombination repair may involve ERCC1-XPF action. Although not the only nuclease involved, ERCC1–XPF is required for ICL repair during several phases of the cell cycle.


Clinical significance


Cerebro-oculo-facio-skeletal syndrome

A few patients with severely disabling ERCC1 mutations that cause cerebro-oculo-facio-skeletal syndrome (COFS) have been reported. COFS syndrome is a rare recessive disorder in which affected individuals undergo rapid neurologic decline and indications of accelerated aging. A very severe case of such disabling mutations is F231L mutation in the tandem helix-hairpin-helix domain of ERCC1 at its interface with XPF. It is shown that this single mutation is very important for the stability of the ERCC1-XPF complex. This Phenylalanine residue is assisting ERCC1 to accommodate a key Phenylalanine residue from XPF (F894) and the mutation (F231L) disturbs this accommodating function. As a consequence, F894 protrudes out of the interface and the mutant complex is dissociating faster compared to the native one. The life span of patients with such mutations is often around 1–2 years.


Cockayne syndrome

One
Cockayne syndrome Cockayne syndrome (CS), also called Neill-Dingwall syndrome, is a rare and fatal autosomal recessive neurodegenerative disorder characterized by growth failure, impaired development of the nervous system, abnormal sensitivity to sunlight ( photo ...
(CS) type II patient designated CS20LO exhibited a homozygous mutation in exon 7 of ERCC1, producing a F231L mutation.


Relevance in chemotherapy

Measuring ERCC1 activity may have utility in clinical cancer medicine because one mechanism of resistance to platinum chemotherapy drugs correlates with high ERCC1 activity. Nucleotide excision repair (NER) is the primary DNA repair mechanism that removes the therapeutic platinum-DNA adducts from the tumor DNA. ERCC1 activity levels, being an important part of the NER common final pathway, may serve as a marker of general NER throughput. This has been suggested for patients with gastric, ovarian and bladder cancers. In
Non-small cell lung carcinoma Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than Small-cell carcinoma#Small-cell lung cancer, small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. ...
(NSCLC), surgically removed tumors that receive no further therapy have a better survival if ERCC1-positive than if ERCC1-negative. Thus, ERCC1 positivity is a favorable prognostic marker, referring to how the disease will proceed if not further treated. ERCC1-positive NSCLC tumors do not benefit from adjuvant platinum chemotherapy. However, ERCC1-negative NSCLC tumors, prognostically worse without treatment, derive substantial benefit from adjuvant cisplatin-based chemotherapy. High ERCC1 is thus a negative predictive marker, referring to how it will respond to a specific type of treatment. In
colorectal cancer Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the Colon (anatomy), colon or rectum (parts of the large intestine). Signs and symptoms may include Lower gastrointestinal ...
, clinical trials have not demonstrated the predictive ability of ERCC1 in oxaliplatin‐based treatment. Thus, European Society for Medical Oncology (ESMO) has not recommended ERCC1 testing prior to the use of oxaliplatin in routine practice. ERCC1 genotyping in humans has shown significant polymorphism at codon 118. These polymorphisms may have differential effects on platinum and mitomycin damage.


Deficiency in cancer

ERCC1 protein expression is reduced or absent in 84% to 100% of
colorectal cancer Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the Colon (anatomy), colon or rectum (parts of the large intestine). Signs and symptoms may include Lower gastrointestinal ...
s, and lower expression of ''ERCC1'' has been reported as being associated with unfavorable prognosis in patients undergoing treatment with oxaliplatin. The promoter of ''ERCC1'' is methylated in 38% of gliomas, resulting in reduced
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
and protein expression. The promoter of ''ERCC1'' was located in the DNA 5 kilobases upstream of the protein coding region. Frequencies of epigenetic reductions of nine other DNA repair genes have been evaluated in various cancers and range from 2% ('' OGG1'' in papillary thyroid cancer) to 88% and 90% (''
MGMT MGMT () is an American rock band formed in 2002 in Middletown, Connecticut. It was founded by singers and multi-instrumentalists Andrew VanWyngarden and Benjamin Goldwasser, Ben Goldwasser. Originally signed to Cantora Records by the nascent ...
'' in gastric and colon cancers, respectively). Thus, reduction of protein expression of ERCC1 in 84% to 100% of colon cancers indicates that reduced ERCC1 is one of the most frequent reductions of a DNA repair gene observed in a cancer. Deficiency in ERCC1 protein expression appears to be an early event in colon
carcinogenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cell (biology), cells are malignant transformation, transformed into cancer cells. The process is characterized by changes at the cellular, G ...
, since ERCC1 was found to be deficient in 40% of the crypts within 10 cm on each side of colonic
adenocarcinoma Adenocarcinoma (; plural adenocarcinomas or adenocarcinomata ; AC) is a type of cancerous tumor that can occur in several parts of the body. It is defined as neoplasia of epithelial tissue that has glandular origin, glandular characteristics, or ...
s (within the early field defects from which the cancers likely arose).
Cadmium Cadmium is a chemical element; it has chemical symbol, symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12 element, group 12, zinc and mercury (element), mercury. Like z ...
(Cd) and its compounds are well-known human
carcinogen A carcinogen () is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruse ...
s. During Cd-induced malignant transformation, the promoter regions of ''ERCC1'', as well as of ''h MSH2'', '' XRCC1'', and ''h OGG1'', were heavily methylated and both the messenger RNA and proteins of these DNA repair genes were progressively reduced. DNA damage also increased with Cd-induced transformation. Reduction of protein expression of ERCC1 in progression to sporadic cancer is unlikely to be due to mutation. While germ line (familial) mutations in DNA repair genes cause a high risk of cancer (see inherited impairment in DNA repair increases cancer risk), somatic mutations in DNA repair genes, including ''ERCC1'', only occur at low levels in sporadic (non-familial) cancers. Control of ERCC1 protein level occurred at the translational level. In addition to the wild-type sequence, three splice variants of mRNA ERCC1 exist. ERCC1 mRNA is also found to have either wild-type or three alternative transcription start points. Neither the level of overall mRNA transcription, splice variation nor transcription start point of mRNA correlates with protein level of ERCC1. The rate of ERCC1
protein turnover In cell biology, protein turnover refers to the replacement of older proteins as they are broken down within the cell. Different types of proteins have very different turnover rates. A balance between protein synthesis and protein degradation ...
also does not correlate with ERCC1 protein level. A translational level control of ERCC1, due to a
microRNA Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcr ...
(miRNA), has been shown during HIV viral infection. A trans-activation response element (TAR) miRNA, coded for by the HIV virus, down-regulates ERCC1 protein expression. TAR miRNA allows ERCC1 mRNA to be transcribed, but acts at the p-body level to prevent translation of ERCC1 protein. (A p-body is a cytoplasmic granule “processing body” that interacts with miRNAs to repress translation or trigger degradation of target RNAs.) In breast cancer cell lines, almost one third (55/167) of
miRNA Micro ribonucleic acid (microRNA, miRNA, μRNA) are small, single-stranded, non-coding RNA molecules containing 21–23 nucleotides. Found in plants, animals, and even some viruses, miRNAs are involved in RNA silencing and post-transcri ...
promoters were targets for aberrant methylation (
epigenetic In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
repression). In breast cancers themselves, methylation of let-7a-3/let-7b miRNA in particular was found. This indicates that let-7a-3/let-7b can be epigenetically repressed. Repression of let-7a can cause repression of ERCC1 expression through an intermediary step involving the '' HMGA2'' gene. The let-7a miRNA normally represses the ''HMGA2'' gene, and in normal adult tissues, almost no HMGA2 protein is present. (See also Let-7 microRNA precursor.) Reduction or absence of let-7a miRNA allows high expression of the HMGA2 protein. HMGA proteins are characterized by three DNA-binding domains, called AT-hooks, and an acidic carboxy-terminal tail. HMGA proteins are chromatin architectural transcription factors that both positively and negatively regulate the transcription of a variety of genes. They do not display direct transcriptional activation capacity, but regulate gene expression by changing local DNA conformation. Regulation is achieved by binding to AT-rich regions in the DNA and/or direct interaction with several transcription factors. HMGA2 targets and modifies the chromatin architecture at the ''ERCC1'' gene, reducing its expression. Hypermethylation of the promoter for let-7a miRNA reduces its expression and this allows hyperexpression of HMGA2. Hyperexpression of HMGA2 can then reduce expression of ERCC1. Thus, there are three mechanisms that may be responsible for the low level of protein expression of ERCC1 in 84% to 100% of sporadic colon cancers. From results in gliomas and in cadmium carcinogenesis, methylation of the ERCC1 promoter may be a factor. One or more miRNAs that repress ''ERCC1'' may be a factor. And epigenetically reduced let-7a miRNA allowing hyperexpression of HMGA2 could also reduce protein expression of ERCC1 in colon cancers. Which epigenetic mechanism occurs most frequently, or whether multiple epigenetic mechanisms reduce ERCC1 protein expression in colon cancers has not been determined.


Accelerated aging

DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
-deficient ''Ercc1'' mutant mice show numerous features of accelerated aging, and have a limited lifespan. Accelerated aging in the mutant involves various organs. ''Ercc1'' mutant mice are deficient in several DNA repair processes including transcription-coupled DNA repair. This deficiency prevents resumption of RNA synthesis on the template DNA strand subsequent to it receiving a transcription-blocking DNA damage. Such blockages of transcription appear to promote premature aging, particularly in non-proliferating or slowly proliferating organs such as the nervous system, liver and kidney (see
DNA damage theory of aging The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
). When ''Ercc1'' mutant mice were subjected to dietary restriction their response closely resembled the beneficial response to dietary restriction of wild-type mice. Dietary restriction extended the lifespan of the ''Ercc1'' mutant mice from 10 to 35 weeks for males and from 13 to 39 weeks for females. It appears that in ''Ercc1'' mutant mice dietary restriction while delaying aging also attenuates accumulation of genome-wide DNA damage and preserves transcriptional output, likely contributing to improved cell viability.


Spermatogenesis and oogenesis

Both male and female ''Ercc1''-deficient mice are
infertile In biology, infertility is the inability of a male and female organism to reproduce. It is usually not the natural state of a healthy organism that has reached sexual maturity, so children who have not undergone puberty, which is the body's sta ...
. The
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
function of ''Ercc1'' appears to be required in both male and female
germ cell A germ cell is any cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they unde ...
s at all stages of their maturation. The testes of ''Ercc1''-deficient mice have an increased level of 8-oxoguanine in their
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
, suggesting that ''Ercc1'' may have a role in removing oxidative DNA damages.


Macular degeneration

Age-related
macular degeneration Macular degeneration, also known as age-related macular degeneration (AMD or ARMD), is a medical condition which may result in blurred vision, blurred or vision loss, no vision in the center of the visual field. Early on there are often no sym ...
(AMD) of the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
is the leading cause of blindness in people over age fifty. The retina is the highest oxygen consuming tissue in the human body and thus prone to oxidative damages. An ''Ercc1'' mutant mouse model depleted in expression the
DNA repair DNA repair is a collection of processes by which a cell (biology), cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is cons ...
enzyme ERCC1-XPF was found to undergo accelerated retinal degeneration suggesting that spontaneous DNA damage may be a key factor in age-related retinal degeneration.


Notes


References


Further reading

* * * * * * * * * * * * * * * * * * *


External links


GeneReviews/NIH/NCBI/UW entry on Xeroderma Pigmentosum
{{DNA repair