Dorman Luke Construction
   HOME

TheInfoList



OR:

A dual uniform polyhedron is the
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a nu ...
of a
uniform polyhedron In geometry, a uniform polyhedron has regular polygons as Face (geometry), faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruence (geometry), congruent. Uniform po ...
. Where a uniform polyhedron is
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face i ...
, a dual uniform polyhedron is
face-transitive In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its Face (geometry), faces are the same. More specifically, all faces must be not ...
.


Enumeration

The face-transitive polyhedra comprise a set of 9 regular polyhedra, two finite sets comprising 66 non-regular polyhedra, and two infinite sets: * 5 regular convex
Platonic solid In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (id ...
s:
regular tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
,
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
,
regular octahedron In geometry, a regular octahedron is a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. An octahedron, more generally, can be any eight-sided polyh ...
,
regular dodecahedron A regular dodecahedron or pentagonal dodecahedronStrictly speaking, a pentagonal dodecahedron need not be composed of regular pentagons. The name "pentagonal dodecahedron" therefore covers a wider class of solids than just the Platonic solid, the ...
, and
regular icosahedron The regular icosahedron (or simply ''icosahedron'') is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with Regular polygon, regular faces to each of its pentagonal faces, or by putting ...
. The regular octahedron is dual to the cube, and the regular icosahedron is dual to the regular dodecahedron. The regular tetrahedron is
self-dual In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a Injective function, one-to-one fashion, often (but not always) by means of an Involution (mathematics), involution ...
, meaning its dual is the regular tetrahedron itself. * 4 regular star Kepler–Poinsot solids:
great dodecahedron In geometry, the great dodecahedron is one of four Kepler–Poinsot polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagons), intersecting each other making a pentagrammic path, with five pentagons meeting at each vert ...
,
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler–Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex List of regular polytopes#Non-convex 2, regular polyhedra. It is composed of 12 pentag ...
,
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex List of regular polytopes#Non-convex 2, regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangul ...
, and
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at eac ...
. The great dodecahedron is dual to the small stellated dodecahedron, and the great icosahedron is dual to the great stellated dodecahedron. * 13 convex
Catalan solid The Catalan solids are the dual polyhedron, dual polyhedra of Archimedean solids. The Archimedean solids are thirteen highly-symmetric polyhedra with regular faces and symmetric vertices. The faces of the Catalan solids correspond by duality to ...
s, which are dual to the uniform convex
Archimedean solids The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They ...
. * 53 star polyhedra, which are dual to the
uniform star polyhedra In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, ...
. * The infinite series of
bipyramid In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two Pyramid (geometry), pyramids together base (geometry), base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise ...
s, which are dual to the uniform prisms, both convex and star. * The infinite series of
trapezohedra In geometry, an trapezohedron, -trapezohedron, -antidipyramid, -antibipyramid, or -deltohedron Remarks: the faces of a deltohedron are deltoids; a (non-twisted) kite or deltoid can be dissected into two isosceles triangles or "deltas" (Δ), ba ...
, which are dual to the uniform
antiprism In geometry, an antiprism or is a polyhedron composed of two Parallel (geometry), parallel Euclidean group, direct copies (not mirror images) of an polygon, connected by an alternating band of triangles. They are represented by the Conway po ...
s, both convex and star. The full set are described by Wenninger, together with instructions for constructing models, in his book ''Dual Models''.


Dorman Luke construction

For a
uniform polyhedron In geometry, a uniform polyhedron has regular polygons as Face (geometry), faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruence (geometry), congruent. Uniform po ...
, each face of the dual polyhedron may be derived from the original polyhedron's corresponding
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
by using the Dorman Luke construction. Dorman Luke's construction proceeds as follows: #Mark the points , , , of each edge connected to the vertex (in this case, the midpoints) such that . #Draw the vertex figure . #Draw the circumcircle of . #Draw the line tangent to the circumcircle at each corner , , , . #Mark the points , , , , where each two adjacent tangent lines meet. The line segments , , , are already drawn, as parts of the tangent lines. The polygon ''EFGH'' is the face of the dual polyhedron that corresponds to the original vertex . In this example, the size of the vertex figure was chosen so that its circumcircle lies on the
intersphere In geometry, the midsphere or intersphere of a convex polyhedron is a sphere which is tangent to every edge of the polyhedron. Not every polyhedron has a midsphere, but the uniform polyhedra, including the regular, quasiregular and semiregular ...
of the cuboctahedron, which also becomes the intersphere of the dual rhombic dodecahedron. Dorman Luke's construction can only be used when a polyhedron has such an intersphere so that the vertex figure has a circumcircle. For instance, it can be applied to the
uniform polyhedra In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent. Uniform polyhedra may be regular (if also fac ...
.


See also

*
List of uniform polyhedra In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are ...


Notes


References

*. *. * * * {{cite book , first=Magnus , last=Wenninger , authorlink=Magnus Wenninger , title=Dual Models , publisher=Cambridge University Press , year=1983 , isbn=0-521-54325-8