HOME



picture info

Trapezohedra
In geometry, an trapezohedron, -trapezohedron, -antidipyramid, -antibipyramid, or -deltohedron Remarks: the faces of a deltohedron are deltoids; a (non-twisted) kite or deltoid can be dissected into two isosceles triangles or "deltas" (Δ), base-to-base. is the dual polyhedron of an antiprism. The faces of an are congruent and symmetrically staggered; they are called ''twisted kites''. With a higher symmetry, its faces are ''kites'' (sometimes also called ''trapezoids'', or ''deltoids''). The "" part of the name does not refer to faces here, but to two arrangements of each vertices around an axis of symmetry. The dual antiprism has two actual faces. An trapezohedron can be dissected into two equal pyramids and an antiprism. Terminology These figures, sometimes called deltohedra, are not to be confused with deltahedra, whose faces are equilateral triangles. ''Twisted'' ''trigonal'', ''tetragonal'', and ''hexagonal trapezohedra'' (with six, eight, and twelve ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hexagonal Trapezohedron
In geometry, a hexagonal trapezohedron or deltohedron is the fourth in an infinite series of trapezohedra which are dual polyhedra to the antiprisms. It has twelve faces which are congruence (geometry), congruent kite (geometry), kites. It can be described by the Conway polyhedron notation, Conway notation] It is an isohedral (face-transitive) figure, meaning that all its face (geometry), faces are the same. More specifically, all faces are not merely congruent but also ''transitive'', i.e. lie within the same ''symmetry orbit''. Convex polytope, Convex isohedral polyhedra are the shapes that will make fair dice. Symmetry The symmetry group, symmetry a hexagonal trapezohedron is D6d of order 24. The Point groups in three dimensions#Rotation groups, rotation group is D6 of order 12. Variations One degree of freedom within D6 symmetry changes the kites into congruent quadrilaterals with 3 edges lengths. In the limit, one edge of each quadrilateral goes to zero length, and these ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystal System
In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices. Crystal systems that have space groups assigned to a common lattice system are combined into a crystal family. The seven crystal systems are ''triclinic'', ''monoclinic'', ''orthorhombic'', ''tetragonal'', ''trigonal'', ''hexagonal'', and ''cubic''. Informally, two crystals are in the same crystal system if they have similar symmetries (though there are many exceptions). Classifications Crystals can be classified in three ways: lattice systems, crystal systems and crystal families. The various classifications are often confused: in particular the trigonal crystal system i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagonal Trapezohedron
In geometry, a pentagonal trapezohedron is the third in the infinite family of trapezohedra, face-transitive polyhedra. Its dual polyhedron is the pentagonal antiprism. As a decahedron it has ten faces which are congruent kites. It can be decomposed into two pentagonal pyramids and a regular dodecahedron in the middle. 10-sided dice The pentagonal trapezohedron was patented for use as a gaming die (i.e. "game apparatus") in 1906. These dice are used for role-playing games that use percentile-based skills; however, a twenty-sided die can be labeled with the numbers 0-9 twice to use for percentages instead. Subsequent patents on ten-sided dice have made minor refinements to the basic design by rounding or truncating the edges. This enables the die to tumble so that the outcome is less predictable. One such refinement became notorious at the 1980 Gen Con when the patent was incorrectly thought to cover ten-sided dice in general. Ten-sided dice are commonly numbered from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rhombic Dodecahedron
In geometry, the rhombic dodecahedron is a Polyhedron#Convex_polyhedra, convex polyhedron with 12 congruence (geometry), congruent rhombus, rhombic face (geometry), faces. It has 24 edge (geometry), edges, and 14 vertex (geometry), vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to Honeycomb (geometry), tesselate its copies in space creating a rhombic dodecahedral honeycomb. There are some variations of the rhombic dodecahedron, one of which is the Bilinski dodecahedron. There are some stellations of the rhombic dodecahedron, one of which is the Escher's solid. The rhombic dodecahedron may also appear in nature (such as in the garnet crystal), the architectural philosophies, practical usages, and toys. As a Catalan solid Metric properties The rhombic dodecahedron is a polyhedron with twelve rhombus, rhombi, each of which long face-diagonal length is exactly \sqrt times the sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Face-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its Face (geometry), faces are the same. More specifically, all faces must be not merely Congruence (geometry), congruent but must be ''transitive'', i.e. must lie within the same ''symmetry orbit''. In other words, for any two faces and , there must be a symmetry of the ''entire'' figure by Translation (geometry), translations, Rotation (mathematics), rotations, and/or Reflection (mathematics), reflections that maps onto . For this reason, Convex polytope, convex isohedral polyhedra are the shapes that will make fair dice. Isohedral polyhedra are called isohedra. They can be described by their face configuration. An isohedron has an Parity (mathematics), even number of faces. The Dual polyhedron, dual of an isohedral polyhedron is vertex-transitive, i.e. isogonal. The Catalan solids, the bipyramids, and the trapezo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deltahedron
A deltahedron is a polyhedron whose faces are all equilateral triangles. The deltahedron was named by Martyn Cundy, after the Greek capital letter delta resembling a triangular shape Δ. Deltahedra can be categorized by the property of convexity. The simplest convex deltahedron is the regular tetrahedron, a pyramid with four equilateral triangles. There are eight convex deltahedra, which can be used in the applications of chemistry as in the polyhedral skeletal electron pair theory and chemical compounds. There are infinitely many concave deltahedra. Strictly convex deltahedron A polyhedron is said to be ''convex'' if a line between any two of its vertices lies either within its interior or on its boundary, and additionally, if no two faces are coplanar (lying in the same plane) and no two edges are collinear (segments of the same line), it can be considered as being strictly convex. Of the eight convex deltahedra, three are Platonic solids and five are Johnson solids. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiregular Polyhedron
In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. Definitions In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on its vertices; today, this is more commonly referred to as a uniform polyhedron (this follows from Thorold Gosset's 1900 definition of the more general semiregular polytope). These polyhedra include: *The thirteen Archimedean solids. ** The elongated square gyrobicupola (also called a pseudo-rhombicuboctahedron), a Johnson solid, has identical vertex figures (3.4.4.4) but because of a twist it is not vertex-transitive. Branko Grünbaum argued for including it as a 14th Archimedean solid. *An infinite series of convex prisms. *An infinite series of convex antiprisms (their semiregular nature was first observed by Kepler). These semiregular solids can be fully specified by a vertex configuration: a listing of the faces by number of sides, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kite (geometry)
In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word ''deltoid'' may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals.See H. S. M. Coxeter's review of in : "It is unfortunate that the author uses, instead of 'kite', the name 'deltoid', which belongs more properly to a curve, the three-cusped hypocycloid." A kite may also be called a dart, particularly if it is not convex. Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and tangential. They include as special cases the right kites, with two opposite right angles; the rhombus, rhombi, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Center Of Symmetry
A fixed point of an isometry group is a point that is a fixed point for every isometry in the group. For any isometry group in Euclidean space the set of fixed points is either empty or an affine space. For an object, any unique centre and, more generally, any point with unique properties with respect to the object is a fixed point of its symmetry group. In particular this applies for the centroid of a figure, if it exists. In the case of a physical body, if for the symmetry not only the shape but also the density is taken into account, it applies to the centre of mass. If the set of fixed points of the symmetry group of an object is a singleton then the object has a specific centre of symmetry. The centroid and centre of mass, if defined, are this point. Another meaning of "centre of symmetry" is a point with respect to which inversion symmetry applies. Such a point needs not be unique; if it is not, there is translational symmetry, hence there are infinitely many of such points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adjacent Side (polygon)
In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon's '' vertices'' or ''corners''. An ''n''-gon is a polygon with ''n'' sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. More precisely, the only allowed intersections among the line segments that make up the polygon are the shared endpoints of consecutive segments in the polygonal chain. A simple polygon is the boundary of a region of the plane that is called a ''solid polygon''. The interior of a solid polygon is its ''body'', also known as a ''polygonal region'' or ''polygonal area''. In contexts where one is concerned only with simple and solid polygons, a ''polygon'' may refer only to a simple polygon or to a solid polygon. A polygonal chain may cross over itself, creating star polygon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]