HOME

TheInfoList



OR:

Darmstadtium is a synthetic chemical element; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Ds and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
110. It is extremely
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
: the most stable known
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
, darmstadtium-281, has a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of approximately 14 seconds. Darmstadtium was first created in November 1994 by the
GSI Helmholtz Centre for Heavy Ion Research The GSI Helmholtz Centre for Heavy Ion Research () is a federally and state co-funded heavy ion () research center in Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research (), abbreviated GSI, to conduct research on a ...
in the city of
Darmstadt Darmstadt () is a city in the States of Germany, state of Hesse in Germany, located in the southern part of the Frankfurt Rhine Main Area, Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the ...
, Germany, after which it was named. In the
periodic table The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
, it is a
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term seems to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-bloc ...
transactinide element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. The superheavy elements are those beyond the actinides in ...
. It is a member of the 7th period and is placed in the
group 10 element Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and darmstadtium (Ds). All are d-block transition metals. All known isotopes o ...
s, although no chemical experiments have yet been carried out to confirm that it behaves as the heavier homologue to
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
in group 10 as the eighth member of the 6d series of
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
s. Darmstadtium is calculated to have similar properties to its lighter homologues,
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
,
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
, and
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
.


Introduction


History


Discovery

Darmstadtium was first discovered on November 9, 1994, at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung, GSI) in
Darmstadt Darmstadt () is a city in the States of Germany, state of Hesse in Germany, located in the southern part of the Frankfurt Rhine Main Area, Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the ...
,
Germany Germany, officially the Federal Republic of Germany, is a country in Central Europe. It lies between the Baltic Sea and the North Sea to the north and the Alps to the south. Its sixteen States of Germany, constituent states have a total popu ...
, by Peter Armbruster and
Gottfried Münzenberg Gottfried Münzenberg (17 March 1940 – 2 January 2024) was a German physicist. Life and career Gottfried Münzenberg was born on 17 March 1940, into a family of Protestant ministers (father Pastor Heinz and mother Helene Münzenberg). All ...
, under the direction of
Sigurd Hofmann Sigurd Hofmann (15 February 1944 – 17 June 2022) was a German physicist known for his work on superheavy elements. Biography Hofmann was born in Böhmisch Kamnitz, Nazi Germany (now Česká Kamenice, Czech Republic) on 15 February 1944. He d ...
. The team bombarded a
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
-208 target with accelerated nuclei of
nickel-62 Nickel-62 is an isotope of nickel having 28 protons and 34 neutrons. It is a stable isotope, with the highest binding energy per nucleon of any known nuclide (8.7945 MeV). It is often stated that 56Fe is the "most stable nucleus", but only beca ...
in a heavy ion accelerator and detected a single atom of the isotope darmstadtium-269: Two more atoms followed on November 12 and 17. (Yet another was originally reported to have been found on November 11, but it turned out to be based on data fabricated by
Victor Ninov Victor Ninov (; born June 27, 1959) is a Bulgarian physicist and former researcher who worked primarily in creating superheavy elements. He is known for the co-discoveries of elements 110, 111, and 112 ( darmstadtium, roentgenium and copernic ...
, and was later retracted.) In the same series of experiments, the same team also carried out the reaction using heavier nickel-64 ions. During two runs, 9 atoms of were convincingly detected by correlation with known daughter decay properties: Prior to this, there had been failed synthesis attempts in 1986–87 at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research center for nuclear sciences, with 5,500 staff members including 1,200 researchers holding over 1,000 ...
in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of '' naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and o ...
(then in the
Soviet Union The Union of Soviet Socialist Republics. (USSR), commonly known as the Soviet Union, was a List of former transcontinental countries#Since 1700, transcontinental country that spanned much of Eurasia from 1922 until Dissolution of the Soviet ...
) and in 1990 at the GSI. A 1995 attempt at the
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab) is a Federally funded research and development centers, federally funded research and development center in the Berkeley Hills, hills of Berkeley, California, United States. Established i ...
resulted in signs suggesting but not pointing conclusively at the discovery of a new isotope formed in the bombardment of with , and a similarly inconclusive 1994 attempt at the JINR showed signs of being produced from and . Each team proposed its own name for element 110: the American team proposed ''hahnium'' after
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
in an attempt to resolve the controversy of naming element 105 (which they had long been suggesting this name for), the Russian team proposed ''becquerelium'' after
Henri Becquerel Antoine Henri Becquerel ( ; ; 15 December 1852 – 25 August 1908) was a French nuclear physicist who shared the 1903 Nobel Prize in Physics with Marie and Pierre Curie for his discovery of radioactivity. Biography Family and education Becq ...
, and the German team proposed ''darmstadtium'' after Darmstadt, the location of their institute. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991) The IUPAC/IUPAP Joint Working Party (JWP) recognised the GSI team as discoverers in their 2001 report, giving them the right to suggest a name for the element.


Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, darmstadtium should be known as ''eka-
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
''. In 1979, IUPAC published recommendations according to which the element was to be called ''ununnilium'' (with the corresponding symbol of ''Uun''), a
systematic element name A systematic element name is the temporary name assigned to an unknown or recently synthesized chemical element. A systematic symbol is also derived from this name. In chemistry, a transuranic element receives a permanent name and symbol only af ...
as a placeholder, until the element was discovered (and the discovery then confirmed) and a permanent name was decided on. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it "element 110", with the symbol of ''E110'', ''(110)'' or even simply ''110''. In 1996, the Russian team proposed the name ''becquerelium'' after
Henri Becquerel Antoine Henri Becquerel ( ; ; 15 December 1852 – 25 August 1908) was a French nuclear physicist who shared the 1903 Nobel Prize in Physics with Marie and Pierre Curie for his discovery of radioactivity. Biography Family and education Becq ...
. The American team in 1997 proposed the name ''hahnium'' after
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the field of radiochemistry. He is referred to as the father of nuclear chemistry and discoverer of nuclear fission, the science behind nuclear reactors and ...
(previously this name had been used for element 105). The name ''darmstadtium'' (Ds) was suggested by the GSI team in honor of the city of Darmstadt, where the element was discovered. The GSI team originally also considered naming the element ''wixhausium'', after the suburb of Darmstadt known as Wixhausen where the element was discovered, but eventually decided on ''darmstadtium''. ''Policium'' had also been proposed as a joke due to the
emergency telephone number An emergency telephone number is a number that allows a caller to contact local emergency services for assistance. The emergency number differs from country to country; it is typically a three-digit number so that it can be easily remembered and ...
in Germany being 1–1–0. The new name ''darmstadtium'' was officially recommended by
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
on August 16, 2003.


Isotopes

Darmstadtium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Eleven different isotopes of darmstadtium have been reported with atomic masses 267, 269–271, 273, 275–277, and 279–281, although darmstadtium-267 is unconfirmed. Three darmstadtium isotopes, darmstadtium-270, darmstadtium-271, and darmstadtium-281, have known metastable states, although that of darmstadtium-281 is unconfirmed. Most of these decay predominantly through alpha decay, but some undergo spontaneous fission.


Stability and half-lives

All darmstadtium isotopes are extremely unstable and radioactive; in general, the heavier isotopes are more stable than the lighter. The most stable known darmstadtium isotope, 281Ds, is also the heaviest known darmstadtium isotope; it has a half-life of 14 seconds. The isotope 279Ds has a half-life of 0.18 seconds, while the unconfirmed 281mDs has a half-life of 0.9 seconds. The remaining isotopes and metastable states have half-lives between 1 microsecond and 70 milliseconds. Some unknown darmstadtium isotopes may have longer half-lives, however. Theoretical calculation in a quantum tunneling model reproduces the experimental alpha decay half-life data for the known darmstadtium isotopes. It also predicts that the undiscovered isotope 294Ds, which has a magic number of
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s (184), would have an alpha decay half-life on the order of 311 years; exactly the same approach predicts a ~350-year alpha half-life for the non-magic 293Ds isotope, however.


Predicted properties

Other than nuclear properties, no properties of darmstadtium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that darmstadtium (and its parents) decays very quickly. Properties of darmstadtium metal remain unknown and only predictions are available.


Chemical

Darmstadtium is the eighth member of the 6d series of
transition metals In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
, and should be much like the platinum group metals. Calculations on its
ionization potential In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as :X(g) ...
s and atomic and ionic radii are similar to that of its lighter homologue
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
, thus implying that darmstadtium's basic properties will resemble those of the other
group 10 element Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and darmstadtium (Ds). All are d-block transition metals. All known isotopes o ...
s,
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
,
palladium Palladium is a chemical element; it has symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1802 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas (formally 2 Pallas), ...
, and platinum. Prediction of the probable chemical properties of darmstadtium has not received much attention recently. Darmstadtium should be a very
noble metal A noble metal is ordinarily regarded as a metallic chemical element, element that is generally resistant to corrosion and is usually found in nature in its native element, raw form. Gold, platinum, and the other platinum group metals (ruthenium ...
. The predicted
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
for the Ds2+/Ds couple is 1.7 V. Based on the most stable oxidation states of the lighter group 10 elements, the most stable oxidation states of darmstadtium are predicted to be the +6, +4, and +2 states; however, the neutral state is predicted to be the most stable in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water ...
s. In comparison, only platinum is known to show the maximum oxidation state in the group, +6, while the most stable state is +2 for both nickel and palladium. It is further expected that the maximum oxidation states of elements from
bohrium Bohrium is a synthetic chemical element; it has symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in particle accelerators but is not found in nature. All known isotopes of ...
(element 107) to darmstadtium (element 110) may be stable in the gas phase but not in aqueous solution. Darmstadtium hexafluoride (DsF6) is predicted to have very similar properties to its lighter homologue
platinum hexafluoride Platinum hexafluoride is the chemical compound with the formula Pt F6, and is one of seventeen known binary hexafluorides. It is a dark-red volatile solid that forms a red gas. The compound is a unique example of platinum in the +6 oxidation sta ...
(PtF6), having very similar electronic structures and ionization potentials. It is also expected to have the same
octahedral molecular geometry In chemistry, octahedral molecular geometry, also called square bipyramidal, describes the shape of compounds with six atoms or groups of atoms or ligands symmetrically arranged around a central atom, defining the vertices of an octahedron. The o ...
as PtF6. Other predicted darmstadtium compounds are darmstadtium carbide (DsC) and darmstadtium tetrachloride (DsCl4), both of which are expected to behave like their lighter homologues. Unlike platinum, which preferentially forms a
cyanide In chemistry, cyanide () is an inorganic chemical compound that contains a functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom. Ionic cyanides contain the cyanide anion . This a ...
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
in its +2 oxidation state, Pt(CN)2, darmstadtium is expected to preferentially remain in its neutral state and form instead, forming a strong Ds–C bond with some multiple bond character.


Physical and atomic

Darmstadtium is expected to be a solid under normal conditions and to crystallize in the
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
structure, unlike its lighter congeners which crystallize in the
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
structure, because it is expected to have different electron charge densities from them. It should be a very heavy metal with a
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of around 26–27 g/cm3. In comparison, the densest known element that has had its density measured,
osmium Osmium () is a chemical element; it has Symbol (chemistry), symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a Abundance of elements in Earth's crust, trace element in a ...
, has a density of only 22.61 g/cm3. The outer
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
of darmstadtium is calculated to be 6d8 7s2, which obeys the
Aufbau principle In atomic physics and quantum chemistry, the Aufbau principle (, from ), also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill Electron shell#Subshells, subshells of the lowest available energy, the ...
and does not follow platinum's outer electron configuration of 5d9 6s1. This is due to the relativistic stabilization of the 7s2 electron pair over the whole seventh period, so that none of the elements from 104 to 112 are expected to have electron configurations violating the Aufbau principle. The atomic radius of darmstadtium is expected to be around 132 pm.


Experimental chemistry

Unambiguous determination of the chemical characteristics of darmstadtium has yet to have been established due to the short half-lives of darmstadtium isotopes and a limited number of likely volatile compounds that could be studied on a very small scale. One of the few darmstadtium compounds that are likely to be sufficiently volatile is darmstadtium hexafluoride (), as its lighter homologue platinum hexafluoride () is volatile above 60 °C and therefore the analogous compound of darmstadtium might also be sufficiently volatile; a volatile octafluoride () might also be possible. For chemical studies to be carried out on a transactinide, at least four atoms must be produced, the half-life of the isotope used must be at least 1 second, and the rate of production must be at least one atom per week. Even though the half-life of 281Ds, the most stable confirmed darmstadtium isotope, is 14 seconds, long enough to perform chemical studies, another obstacle is the need to increase the rate of production of darmstadtium isotopes and allow experiments to carry on for weeks or months so that statistically significant results can be obtained. Separation and detection must be carried out continuously to separate out the darmstadtium isotopes and have automated systems experiment on the gas-phase and solution chemistry of darmstadtium, as the yields for heavier elements are predicted to be smaller than those for lighter elements; some of the separation techniques used for bohrium and
hassium Hassium is a synthetic element, synthetic chemical element; it has chemical symbol, symbol Hs and atomic number 108. It is highly radioactive: its most stable known isotopes have half-life, half-lives of about ten seconds. One of its isotopes, Hs ...
could be reused. However, the experimental chemistry of darmstadtium has not received as much attention as that of the heavier elements from
copernicium Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
to
livermorium Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the La ...
. The more
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
-rich darmstadtium isotopes are the most stable and are thus more promising for chemical studies. However, they can only be produced indirectly from the alpha decay of heavier elements, and indirect synthesis methods are not as favourable for chemical studies as direct synthesis methods. The more neutron-rich isotopes 276Ds and 277Ds might be produced directly in the reaction between
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
-232 and calcium-48, but the yield was expected to be low. Following several unsuccessful attempts, 276Ds was produced in this reaction in 2022 and observed to have a half-life less than a millisecond and a low yield, in agreement with predictions. Additionally, 277Ds was successfully synthesized using indirect methods (as a granddaughter of 285Fl) and found to have a short half-life of 3.5 ms, not long enough to perform chemical studies. The only known darmstadtium isotope with a half-life long enough for chemical research is 281Ds, which would have to be produced as the granddaughter of 289Fl.


See also

*
Island of stability In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclid ...


Notes


References


Bibliography

* * * * *


External links


Darmstadtium
at ''
The Periodic Table of Videos ''Periodic Videos'' (also known as ''The Periodic Table of Videos'') is a video project and YouTube channel on chemistry. It consists of a series of videos about chemical elements and the periodic table, with additional videos on other topics i ...
'' (University of Nottingham) {{Authority control Chemical elements with body-centered cubic structure Chemical elements Darmstadt Synthetic elements Transition metals