HOME

TheInfoList



OR:

DRIP-seq (DRIP-sequencing) is a technology for genome-wide profiling of a type of DNA-RNA hybrid called an "
R-loop An R-loop is a three-stranded nucleic acid structure, composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA. R-loops may be formed in a variety of circumstances, and may be tolerated or cleared by cellular components. T ...
". DRIP-seq utilizes a sequence-independent but structure-specific
antibody An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and Viral disease, viruses. The antibody recognizes a unique m ...
for DNA-RNA
immunoprecipitation Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. This process can be used to isolate and concentrate a particular protein from a sam ...
(DRIP) to capture R-loops for massively parallel DNA sequencing.


Introduction

An R-loop is a three-stranded
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main ...
structure, which consists of a DNA-RNA hybrid duplex and a displaced single stranded DNA (ssDNA). R-loops are predominantly formed in
cytosine Cytosine () (symbol C or Cyt) is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine ( uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached ...
-rich genomic regions during transcription and are known to be involved with
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. ...
and
immunoglobulin class switching Immunoglobulin class switching, also known as isotype switching, isotypic commutation or class-switch recombination (CSR), is a biological mechanism that changes a B cell's production of immunoglobulin from one type to another, such as from the ...
. They have been found in a variety of species, ranging from bacteria to mammals. They are preferentially localized at
CpG island The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG isl ...
promoters in human cells and highly transcribed regions in yeast. Under abnormal conditions, namely elevated production of DNA-RNA hybrids, R-loops can cause
genome instability Genome instability (also genetic instability or genomic instability) refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or aneup ...
by exposing single-stranded DNA to endogenous damages exerted by the action of enzymes such as AID and
APOBEC image:Apobec.J.Steinfeld.D.png, 300px, upExample of a member of the APOBEC family, APOBEC-2. A cytidine deaminase from ''Homo sapiens''.; ; rendered usinPyMOL APOBEC ("apolipoprotein B mRNA editing enzyme, catalytic polypeptide") is a family o ...
, or overexposure to chemically reactive species. Therefore, understanding where and in what circumstances R-loops are formed across the genome is crucial for the better understanding of genome instability. R-loop characterization was initially limited to locus specific approaches. However, upon the arrival of
massive parallel sequencing Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation ...
technologies and thereafter derivatives like DRIP-seq, the possibility to investigate entire genomes for R-loops has opened up. DRIP-seq relies on the high specificity and affinity of the S9.6
monoclonal antibody A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell Lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell. Monoclonal antibodies ...
(mAb) towards DNA-RNA hybrids of various lengths. S9.6 mAb was first created and characterized in 1986 and is currently used for the selective immunoprecipitation of R-loops. Since then, it was used in diverse immunoprecipitation methods for R-loop characterization. The concept behind DRIP-seq is similar to
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated pro ...
; R-loop fragments are the main immunoprecipitated material in DRIP-seq.


Uses and Current Research

DRIP-seq is mainly used for genome-wide mapping of R-loops. Identifying R-loop formation sites allows the study of diverse cellular events, such as the function of R-loop formation at specific regions, the characterization of these regions, and the impact on gene expression. It can also be used to study the influence of R-loops in other processes like DNA replication and synthesis. Indirectly, DRIP-seq can be performed on mutant cell lines deficient in genes involved in R-loop resolution. These types of studies provide information about the roles of the mutated gene in suppressing DNA-RNA formation and potentially about the significance of R-loops in genome instability. DRIP-seq was first used for genome-wide profiling of R-loops in humans, which showed widespread R-loop formation at CpG island promoters. Particularly, the researchers found that R-loop formation is associated with the unmethylated state of CpG islands. DRIP-seq was later used to profile R-loop formation at transcription start and termination sites in human pluripotent Ntera2 cells. In this study, the researchers revealed that R-loops on 3' ends of genes may be correlated with transcription termination.


Workflow of DRIP-seq


Genomic DNA extraction

First,
genomic DNA Genomic deoxyribonucleic acid (abbreviated as gDNA) is chromosomal DNA, in contrast to extra-chromosomal DNAs like plasmids. Most organisms have the same genomic DNA in every cell; however, only certain genes are active in each cell to allow for ...
(gDNA) is extracted from cells of interest by proteinase K treatment followed by phenol-chloroform extraction and
ethanol precipitation Ethanol precipitation is a method used to purify and/or concentrate RNA, DNA, and polysaccharides such as pectin and xyloglucan from aqueous solutions by adding ethanol as an antisolvent. DNA precipitation Theory DNA is polar due to its hi ...
. Additional zymolyase digestion is necessary for yeast cells to remove the cell wall prior to proteinase K treatment. gDNA can also be extracted with a variety of other methods, such as column-based methods.


Genomic DNA fragmentation

gDNA is treated with
S1 nuclease Nuclease S1 () is an endonuclease enzyme that splits single-stranded DNA (ssDNA) and RNA into oligo- or mononucleotides. This enzyme catalyses the following chemical reaction : Endonucleolytic cleavage to 5'-phosphomononucleotide and 5'-phosph ...
to remove undesired ssDNA and
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
, followed by ethanol precipitation to remove the S1 nuclease. Then, gDNA is fragmented with
restriction endonuclease A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class ...
, yielding double-stranded DNA (dsDNA) fragments of different sizes. Alternatively, gDNA fragments can be generated by
sonication A sonicator at the Weizmann Institute of Science during sonicationSonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seawe ...
.


Immunoprecipitation

Fragmented gDNA is incubated with the DNA-RNA structure-specific S9.6 mAb. This step is unique for the DRIP-seq protocol, since it entirely relies on the high specificity and affinity of the S9.6 mAb for DNA-RNA hybrids. The antibody will recognize and bind these regions dispersed across the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
and will be used for immunoprecipitation. The S9.6 antibodies are bound to magnetic beads by interacting with specific ligands (i.e.
protein A Protein A is a 42 kDa surface protein originally found in the cell wall of the bacteria ''Staphylococcus aureus''. It is encoded by the ''spa'' gene and its regulation is controlled by DNA topology, cellular osmolarity, and a two-component syste ...
or
protein G Protein G is an immunoglobulin-binding protein expressed in group C and G Streptococcal bacteria much like Protein A but with differing binding specificities. It is a ~60-kDA (65 kDA for strain G148 and 58 kDa for strain C40) cell surface prot ...
) on the surface of the beads. Thus, the DNA-RNA containing fragments will bind to the beads by means of the antibody.


Elution

The magnetic beads are washed to remove any gDNA not bound to the beads by a series of washes and DNA-RNA hybrids are recovered by elution. To remove the antibody bound to the nucleic acid hybrids, proteinase K treatment is performed followed by phenol-chloroform extraction and ethanol precipitation. This results in the isolation of purified DNA-RNA hybrids of different sizes.


Sequencing

For massive parallel sequencing of these fragments, the immunoprecipitated material is sonicated, size selected and ligated to barcoded
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
adaptors for cluster enrichment and sequencing.


Computational Analysis

To detect sites of R-loop formation, the hundreds of millions of sequencing reads from DRIP-seq are first aligned to a
reference genome A reference genome (also known as a reference assembly) is a digital nucleic acid sequence database, assembled by scientists as a representative example of the set of genes in one idealized individual organism of a species. As they are assemble ...
with a short-read sequence aligner, then peak calling methods designed for ChIP-seq can be used to evaluate DRIP signals. If different cocktails of restriction enzymes were used for different DRIP-seq experiments of the same sample, consensus DRIP-seq peaks are called. Typically, peaks are compared against those from a corresponding RNase H1-treated sample, which serves as an input control.


Limitations

Due to the absence of another antibody-based method for R-loop immunoprecipitation, validation of DRIP-seq results is difficult. However, results of other R-loop profiling methods, such as DRIVE-seq, may be used to measure consensus. On the other hand, DRIP-seq relies on existing short-read sequencing platforms for the sequencing of R-loops. In other words, all inherent limitations of these platform also apply to DRIP-seq. In particular, typical short-read sequencing platforms would produce uneven read coverage in GC-rich regions. Sequencing long R-loops might pose a challenge because R-loops are predominantly formed in cytosine-rich DNA regions. Moreover, GC-rich regions tend to have low complexity by nature, which is difficult for short read aligners to produce unique alignments.


Other R-loop Profiling Methods

Although there are several other methods for analysis and profiling of R-loop formation, only few provide coverage and robustness at the genome-wide scale. *Non-denaturing bisulfite modification and sequencing: This method consists of bisulfite treatment followed by sequencing and relies on the mutagenic effect of sodium bisulfite on ssDNA. Although this method is primarily used to localize specific CpG island promoters, it was used to detect R-loops at a minor scale and other ssDNA fragile sites. *DNA:RNA In Vitro Enrichment (DRIVE-seq): This method shares very similar principles of DRIP-seq except for the use of MBP-RNASEH1 endonuclease instead of the S9.6 mAb for R-loops recovery. MBP-RNASEH1 provides an alternative to S9.6 mAb when an additional capture assay is needed, however over-expression of this endonuclease may introduce cytotoxic risks
in vivo Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
. *DNA:RNA immnunoprecipitation followed by hybridization on tiling microarray (DRIP-chip): This method also relies on the use of the S9.6 mAb. However, instead of entering into a sequencing pipeline, the immunoprecipitated material in DRIP-chip is hybridized to a
microarray A microarray is a multiplex lab-on-a-chip. Its purpose is to simultaneously detect the expression of thousands of genes from a sample (e.g. from a tissue). It is a two-dimensional array on a solid substrate—usually a glass slide or silic ...
. An advantage of DRIP-chip over DRIP-seq is the rapid obtention of the data. The limiting factors of this technique are the number of probes on the chip microarrays and absence of DNA sequence information.


See also

*
immunoprecipitation Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. This process can be used to isolate and concentrate a particular protein from a sam ...
*
ChIP-sequencing ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated pro ...
* DNA sequencing


References

{{Reflist Molecular biology techniques Biotechnology DNA RNA