HOME

TheInfoList



OR:

DNA end resection, also called 5′–3′ degradation, is a biochemical process where the blunt end of a section of double-stranded
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
(dsDNA) is modified by cutting away some
nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s from the
5' end Directionality, in molecular biology and biochemistry, is the end-to-end chemical orientation of a single strand of nucleic acid. In a single strand of DNA or RNA, the chemical convention of naming carbon atoms in the nucleotide pentose-sugar-r ...
to produce a 3' single-stranded sequence. The presence of a section of single-stranded DNA (ssDNA) allows the broken end of the DNA to line up accurately with a matching sequence, so that it can be accurately repaired.
Double-strand breaks DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...
(DSBs) can occur at any phase of the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
causing DNA end resection and repair activities to take place, but they are also normal intermediates in
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
recombination. Furthermore, the natural ends of the linear chromosomes resemble DSBs, and although DNA breaks can cause damage to the integrity of genomic DNA, the natural ends are packed into complex specialized DNA protective packages called
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
s that prevent DNA repair activities. Telomeres and mitotic DSBs have different functionality, but both experience the same 5′–3′ degradation process.


Background

A double-strand break is a kind of DNA damage in which both strands in the double helix are severed. DSBs only occur during
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all life, living organisms, acting as the most essential part of heredity, biolog ...
of the
cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
. Furthermore, DSBs can lead to genome rearrangements and instability. Cases where two complementary strands are linked at the point of the DSB have potential to be catastrophic, such that the cell will not be able to complete
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
when it next divides, and will either die or, in rare cases, undergo chromosomal loss, duplications, and even
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
s. Three mechanisms exist to repair DSBs:
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
(NHEJ), microhomology-mediated end joining (MMEJ), and
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
HR. Of these, only NHEJ does not rely on DNA end resection.


Mechanism

Accurate repair of DSBs are essential in the upkeep of genome integrity. From the three mechanisms that exists to repair DSBs, NHEJ and HR repair mechanisms are the dominant pathways. Several highly conservative proteins trigger the DNA Damage Checkpoint for detection of DSBs ensuing repair by either NHEJ or HR repair pathways. NHEJ mechanism functions in ligating two different DSBs with high fidelity, while HR relies on a homologous template to repair DSB ends. DNA end resection in the HR pathway only occurs at two specific phases: S and G2 phases. Since HR pathway requires
sister chromatids A sister chromatid refers to the identical copies ( chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the du ...
for activation, this event only happens in the G2 and S phases of the cell cycle during replication. DSBs that have not begun DNA end resection can be ligated by NHEJ pathway, but resection of a few nucleotides inhibits the NHEJ pathway and commits' DNA repair by the HR pathway. The NHEJ pathway is involved throughout the cell cycle, but it is critical to DNA repair during the G1 phase. In G1 phase there is no sister chromatids to repair DSBs via the HR pathway making the NHEJ pathway a critical repair mechanism. Before resection can take place, the break needs to be detected. In animals, this detection is done by PARP1; similar systems exist in other
eukaryote The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
s: in plants, PARP2 seems to play this role. PARP binding then recruits the MRN complex to the breakage site. This is a highly conserved
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
consisting of Mre11,
Rad50 DNA repair protein RAD50, also known as RAD50, is a protein that in humans is encoded by the ''RAD50'' gene. Function The protein encoded by this gene is highly similar to ''Saccharomyces cerevisiae'' Rad50, a protein involved in DNA double- ...
and NBS1 (known as
Nibrin Nibrin, also known as NBN or NBS1, is a protein which in humans is encoded by the ''NBN'' gene. Function Nibrin is a protein associated with the repair of double strand breaks (DSBs) which pose serious damage to a genome. It is a 754 amino a ...
in mammals, or Xrs2 in yeast, where this complex is called the MRX complex). Before resection can start, CtBP1-interacting protein (CtIP) needs to bind to the MRN complex so that the first phase of resection can begin, namely short-range end resection. After phosphorylated CtIP binds, the Mre11 subunit is able to cut the 5'-terminated strand endonucleolytically, probably about 300 base pairs from the end, and then acts as a 3'→5'
exonuclease Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is th ...
to strip away the end of the 5' strand.


Resection of telomere DSBs

Linear chromosomes are packed into complex specialized DNA protective packages called
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
s. The structure of telomeres is highly conserve and is organized in multiple short tandem DNA repeats. Telomeres and DSBs have different functionality, such that telomeres prevent DNA repair activities. During telomeric DNA replication in the S/G2 and G1 phases of the cell cycle, the 3' lagging strand leaves a short overhang called a G-tail. Telomeric DNA ends at the 3' G tail end because the 3' lagging strand extends without its complementary 5' C leading strand. The G tail provide a major function to telomeric DNA such that the G tails control telomere homeostasis.


Telomeres in G1 phase

In the G1 phase of the cell cycle, the telomere-associated proteins RIF1, RIF2, and RAP2 bind to telomeric DNA and prevent access to the MRX complex. Such process in S. Cerevisiae for example is negatively regulated by this activity. The MRX complex and the Ku complex bind simultaneously and independently to DSBs ends. In the presence of the telomere-associated proteins, MRX fails to bind to the DSB ends while the Ku complex binds to DSB ends. The bound Ku complex to the DSB ends protect the telomeres from nucleolytic degradation by exo1. This results in an inhibition of telomerase elongation at the DSB ends and prevents further telomere action at the G1 phase of the cell cycle.


Telomeres in the late S/G2 phase

In the late S/G2 phase of the cell cycle, the telomere-associated proteins RIF1, RIF2, and RAP2 exhibit their inhibitory effect by binding to telomeric DNA. In the Late S/G2 phase, the protein kinase
CDK1 Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in ...
(cyclin-dependent) promotes telomeric resection. This control is exerted by
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are a predominant group of serine/threonine protein kinases involved in the regulation of the cell cycle and its progression, ensuring the integrity and functionality of cellular machinery. These regulatory enzym ...
s, which
phosphorylate In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
parts of the resection machinery. This process alleviates the inhibitory effect of the telomere-associated proteins, and allows Cdc13 (a binding protein on both the lagging strand, and leading strand) to cover telomeric DNA. The binding of cdc13 to DNA suppresses DNA damage checkpoint and allows resection to occur while allowing for telomerase elongation at the DSB ends.


Resection of mitotic DSBs

One of the important regulatory controls in mitotic cells is deciding which specific DSB repair pathway to take. Once a DSB is detected, the highly conserved complexes are recruited by the DNA ends. If the cell is in the G1 phase of the cell cycle, the complex Ku prevents resection to occur and triggers the NHEJ pathway factors. DSBs in the NHEJ pathway are ligated, a step in the NHEJ pathway that requires DNA ligase activity of Dnl4-Lif1/XRCC4
heterodimer In biochemistry, a protein dimer is a macromolecular complex or multimer formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ...
and the Nej1/XLF protein. This process results in error-prone religation of DSB ends at the G1 phase of the cell cycle. If the cells are in S/G2 phase, mitotic DSBs are controlled through
Cdk1 Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. It has been highly studied in ...
activity and involves phosphorylation of Sae2 Ser267. After phosphorylation occurs by Cdk1, MRX complex binds to dsDNA ends and generates short ssDNA that stretches in the 5' direction. The 5' ssDNA continues resection by the activity of the
helicase Helicases are a class of enzymes that are vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic double helix, separating the two hybridized ...
enzyme, Sgs1 enzyme, and the nucleases Exo1 and Dna2. Involvement of Sae2 Sar267 in DSB processing is highly conserved throughout eukaryotes, such that the Sae2 along with the MRX complex are involved in two major functions: single-strand annealing, and processing of hairpin DNA structures. Like all ssDNA in the nucleus, the resected region is first coated by Replication protein A (RPA) complex, but RPA is then replaced with RAD51 to form a nucleoprotein filament which can take part in the search for a matching region, allowing HR to take place. The 3' ssDNA coated by a RPA promotes the recruitment of Mec1. Mec1 further phosphorylates Sae2 along with cdk1. The resulting phosphorylation by Sae2 by Mec1 helps increase the effect of resection and this in turn leads to the DNA damage checkpoint activation.


Regulators

The pathway of choice in DNA repair is highly regulated to guarantee that cells in the S/G2 and G1 phase use the appropriate mechanism. Regulators in both the NHEJ and HR pathway mediate the appropriate DNA repair response pathway. Furthermore, recent studies into DNA repair show that regulation of DNA end resection is governed by the activity of cdk1 in the cell replication cycle.


NHEJ pathway

DNA end resection is key in determining the correct pathway in NHEJ. For NHEJ pathway to occur, positive regulators such as the Ku and MRX complex mediate recruitment of other NHEJ-associated proteins such as Tel1, Lif1, Dnl4, and Nej1. Since NHEJ does not rely on end resection, NHEJ could only happen in the G1 phase of the cell cycle. Both Ku and NHEJ-associated proteins prevent initiation of resection. Resection ensures that DSBs are not repaired by NHEJ (which joins broken DNA ends together without ensuring that they match), but rather by methods based on homology (matching DNA sequences). Cyclin-dependent protein kinase such as cdk1 in yeast serves as a negative regulator of the NHEJ pathway. Any activity associated with the presence of cyclin dependent protein kinases inhibit the NHEJ pathway


Positive regulators

The presence of a ssDNA allows the broken end of the DNA to line up accurately with a matching sequence, so that it can be accurately repaired. For HR pathway to occur in the S and G2 phases of the cell cycle, availability of a sister chromatid is required. 5′–3′ resection automatically links a DSB to the HR pathway. Cyclin-dependent protein kinase such as cdk1 serve as a positive regulator of the HR pathway. This positive regulator promotes 5′–3′ nucleolytic degradation of DNA ends. Along with cdk1, the MRX complex, B1 cyclin, and Spo11-induced DSBs serve as a positive regulators to the HR pathway.


See also

*
Exonuclease Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is th ...
*
Double-strand breaks DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. A weakened capacity for DNA repair is a risk factor for the development of cancer. DNA is constantly modified ...
*
Blunt ends DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the ...
*
Non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
*
Nucleotide Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
*
Cell cycle The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell (biology), cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA (DNA re ...
*
Telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes (see #Sequences, Sequences). Telomeres are a widespread genetic feature most commonly found in eukaryotes. In ...
* NHEJ *
Homologous Recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
* Microhomology-mediated end joining


References

{{Reflist DNA repair