HOME

TheInfoList



OR:

In
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
, a capacitor is a device that stores
electrical energy Electrical energy is the energy transferred as electric charges move between points with different electric potential, that is, as they move across a voltage, potential difference. As electric potential is lost or gained, work is done changing the ...
by accumulating
electric charge Electric charge (symbol ''q'', sometimes ''Q'') is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative''. Like charges repel each other and ...
s on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the ''
condenser microphone A microphone, colloquially called a mic (), or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and publi ...
''. It is a
passive Passive may refer to: * Passive voice, a grammatical voice common in many languages, see also Pseudopassive * Passive language, a language from which an interpreter works * Passivity (behavior), the condition of submitting to the influence of ...
electronic component An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singula ...
with two terminals. The utility of a capacitor depends on its
capacitance Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related ...
. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed specifically to add capacitance to some part of the circuit. The physical form and construction of practical capacitors vary widely and many
types of capacitor Type may refer to: Science and technology Computing * Typing, producing text via a keyboard, typewriter, etc. * Data type, collection of values used for computations. * File type * TYPE (DOS command), a command to display contents of a file. * Ty ...
are in common use. Most capacitors contain at least two
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
s, often in the form of metallic plates or surfaces separated by a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
medium. A conductor may be a foil, thin film,
sintered Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, pla ...
bead of metal, or an
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
. The nonconducting dielectric acts to increase the capacitor's charge capacity. Materials commonly used as dielectrics include
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
,
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
,
plastic film Plastic film is a thin continuous polymeric material. Thicker plastic material is often called a "sheet". These thin plastic membranes are used to separate areas or volumes, to hold items, to act as barriers, or as printable surfaces. Plast ...
,
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses, Feces#Other uses, herbivore dung, or other vegetable sources in water. Once the water is dra ...
,
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into fragile elastic plates. This characteristic is described as ''perfect basal cleavage''. Mica is co ...
, air, and oxide layers. When an
electric potential Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
difference (a
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
) is applied across the terminals of a capacitor, for example when a capacitor is connected across a battery, an
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
develops across the dielectric, causing a net positive
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
to collect on one plate and net negative charge to collect on the other plate. No current actually flows through a
perfect dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the materia ...
. However, there is a flow of charge through the source circuit. If the condition is maintained sufficiently long, the current through the source circuit ceases. If a time-varying voltage is applied across the leads of the capacitor, the source experiences an ongoing current due to the charging and discharging cycles of the capacitor. Capacitors are widely used as parts of
electrical circuit An electrical network is an interconnection of electrical components (e.g., battery (electricity), batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e. ...
s in many common electrical devices. Unlike a
resistor A resistor is a passive two-terminal electronic component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
, an ideal capacitor does not dissipate energy, although real-life capacitors do dissipate a small amount . The earliest forms of capacitors were created in the 1740s, when European experimenters discovered that electric charge could be stored in water-filled glass jars that came to be known as
Leyden jar A Leyden jar (or Leiden jar, or archaically, Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It typically co ...
s. Today, capacitors are widely used in
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or Conductive trace, traces through which electric current can flow. It is a t ...
s for blocking
direct current Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
while allowing
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
to pass. In
analog filter Analogue Filter (signal processing), filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass (music), bass, mid-range sp ...
networks, they smooth the output of
power supplies A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a r ...
. In resonant circuits they tune
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
s to particular
frequencies Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
. In
electric power transmission Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a ''transmission network''. This is ...
systems, they stabilize voltage and power flow. The property of energy storage in capacitors was exploited as dynamic memory in early digital computers, and still is in modern
DRAM Dram, DRAM, or drams may refer to: Technology and engineering * Dram (unit), a unit of mass and volume, and an informal name for a small amount of liquor, especially whisky or whiskey * Dynamic random-access memory, a type of electronic semicondu ...
.


History

Natural capacitors have existed since prehistoric times. The most common example of natural capacitance are the static charges accumulated between clouds in the sky and the surface of the Earth, where the air between them serves as the dielectric. This results in bolts of
lightning Lightning is a natural phenomenon consisting of electrostatic discharges occurring through the atmosphere between two electrically charged regions. One or both regions are within the atmosphere, with the second region sometimes occurring on ...
when the breakdown voltage of the air is exceeded. In October 1745, Ewald Georg von Kleist of
Pomerania Pomerania ( ; ; ; ) is a historical region on the southern shore of the Baltic Sea in Central Europe, split between Poland and Germany. The central and eastern part belongs to the West Pomeranian Voivodeship, West Pomeranian, Pomeranian Voivod ...
, Germany, found that
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
could be stored by connecting a high-voltage
electrostatic generator An electrostatic generator, or electrostatic machine, is an electric generator, electrical generator that produces ''static electricity'', or electricity at high voltage and low continuous current. The knowledge of static electricity dates back t ...
by a wire to a volume of water in a hand-held glass jar. Von Kleist's hand and the water acted as conductors and the jar as a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
(although details of the mechanism were incorrectly identified at the time). Von Kleist found that touching the wire resulted in a powerful spark, much more painful than that obtained from an electrostatic machine. The following year, the Dutch physicist Pieter van Musschenbroek invented a similar capacitor, which was named the
Leyden jar A Leyden jar (or Leiden jar, or archaically, Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It typically co ...
, after the
University of Leiden Leiden University (abbreviated as ''LEI''; ) is a public research university in Leiden, Netherlands. Established in 1575 by William, Prince of Orange as a Protestant institution, it holds the distinction of being the oldest university in the Neth ...
where he worked. He also was impressed by the power of the shock he received, writing, "I would not take a second shock for the kingdom of France." Daniel Gralath was the first to combine several jars in parallel to increase the charge storage capacity.
Benjamin Franklin Benjamin Franklin (April 17, 1790) was an American polymath: a writer, scientist, inventor, statesman, diplomat, printer, publisher and Political philosophy, political philosopher.#britannica, Encyclopædia Britannica, Wood, 2021 Among the m ...
investigated the
Leyden jar A Leyden jar (or Leiden jar, or archaically, Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It typically co ...
and came to the conclusion that the charge was stored on the glass, not in the water as others had assumed. He also adopted the term "battery", (denoting the increase of power with a row of similar units as in a battery of cannon), subsequently applied to clusters of electrochemical cells. In 1747, Leyden jars were made by coating the inside and outside of jars with metal foil, leaving a space at the mouth to prevent arcing between the foils. The earliest unit of capacitance was the jar, equivalent to about 1.11 nanofarads. Leyden jars or more powerful devices employing flat glass plates alternating with foil conductors were used exclusively up until about 1900, when the invention of
wireless Wireless communication (or just wireless, when the context allows) is the transfer of information (''telecommunication'') between two or more points without the use of an electrical conductor, optical fiber or other continuous guided transm ...
(
radio Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
) created a demand for standard capacitors, and the steady move to higher
frequencies Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
required capacitors with lower
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the ...
. More compact construction methods began to be used, such as a flexible dielectric sheet (like oiled paper) sandwiched between sheets of metal foil, rolled or folded into a small package. Early capacitors were known as ''condensers'', a term that is still occasionally used today, particularly in high power applications, such as automotive systems. The term ''condensatore'' was used by
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; ; 18 February 1745 – 5 March 1827) was an Italian chemist and physicist who was a pioneer of electricity and Power (physics), power, and is credited as the inventor of the electric battery a ...
in 1780 to refer to a device, similar to his
electrophorus In electromagnetism, an electrophorus or electrophore is a simple, manual, Capacitor, capacitive, electrostatic generator used to produce Electric charge, charge via the process of electrostatic induction. A first version of it was invented in 1 ...
, he developed to measure electricity, and translated in 1782 as ''condenser'', where the name referred to the device's ability to store a higher density of electric charge than was possible with an isolated conductor. The term became deprecated because of the ambiguous meaning of steam condenser, with ''capacitor'' becoming the recommended term in the UK from 1926, while the change occurred considerably later in the United States. Since the beginning of the study of
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
, non-conductive materials like
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
,
porcelain Porcelain (), also called china, is a ceramic material made by heating Industrial mineral, raw materials, generally including kaolinite, in a kiln to temperatures between . The greater strength and translucence of porcelain, relative to oth ...
,
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses, Feces#Other uses, herbivore dung, or other vegetable sources in water. Once the water is dra ...
and
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into fragile elastic plates. This characteristic is described as ''perfect basal cleavage''. Mica is co ...
have been used as
insulators Insulator may refer to: * Insulator (electricity), a substance that resists electricity ** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole ** Strain insulator, a device that is designed to work ...
. Decades later, these materials were also well-suited for use as the dielectric for the first capacitors. Paper capacitors, made by sandwiching a strip of impregnated paper between strips of metal and rolling the result into a cylinder, were commonly used in the late 19th century; their manufacture started in 1876, and they were used from the early 20th century as
decoupling capacitor In electronics, a decoupling capacitor is a capacitor used to decouple (i.e. prevent electrical energy from transferring to) one part of a circuit from another. Noise caused by other circuit elements is shunted through the capacitor, reduc ...
s in
telephony Telephony ( ) is the field of technology involving the development, application, and deployment of telecommunications services for the purpose of electronic transmission of voice, fax, or data, between distant parties. The history of telephony is ...
. Porcelain was used in the first ceramic capacitors. In the early years of Marconi's wireless transmitting apparatus, porcelain capacitors were used for high voltage and high frequency application in the
transmitter In electronics and telecommunications, a radio transmitter or just transmitter (often abbreviated as XMTR or TX in technical documents) is an electronic device which produces radio waves with an antenna (radio), antenna with the purpose of sig ...
s. On the receiver side, smaller mica capacitors were used for resonant circuits. Mica capacitors were invented in 1909 by William Dubilier. Prior to World War II, mica was the most common dielectric for capacitors in the United States. Charles Pollak (born Karol Pollak), the inventor of the first
electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
s, found out that the oxide layer on an aluminum anode remained stable in a neutral or alkaline
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
, even when the power was switched off. In 1896 he was granted U.S. Patent No. 672,913 for an "Electric liquid capacitor with aluminum electrodes". Solid electrolyte
tantalum capacitor A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded ...
s were invented by
Bell Laboratories Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several lab ...
in the early 1950s as a miniaturized and more reliable low-voltage support capacitor to complement their newly invented
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
. With the development of plastic materials by organic chemists during the
Second World War World War II or the Second World War (1 September 1939 – 2 September 1945) was a World war, global conflict between two coalitions: the Allies of World War II, Allies and the Axis powers. World War II by country, Nearly all of the wo ...
, the capacitor industry began to replace paper with thinner polymer films. One very early development in film capacitors was described in British Patent 587,953 in 1944. Electric double-layer capacitors (now
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s) were invented in 1957 when H. Becker developed a "Low voltage electrolytic capacitor with porous carbon electrodes". He believed that the energy was stored as a charge in the carbon pores used in his capacitor as in the pores of the etched foils of electrolytic capacitors. Because the double layer mechanism was not known by him at the time, he wrote in the patent: "It is not known exactly what is taking place in the component if it is used for energy storage, but it leads to an extremely high capacity." The MOS capacitor was later widely adopted as a storage capacitor in
memory chip Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a sil ...
s, and as the basic building block of the
charge-coupled device A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a ...
(CCD) in
image sensor An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they refraction, pass through or reflection (physics), reflect off objects) into s ...
technology. In 1966, Dr.
Robert Dennard Robert Heath Dennard (September 5, 1932 – April 23, 2024) was an American electrical engineer and inventor. Biography Dennard was born in Terrell, Texas. He received his B.S. and M.S. degrees in electrical engineering from Southern Methodist ...
invented modern DRAM architecture, combining a single MOS transistor per capacitor.


Theory of operation


Overview

A capacitor consists of two conductors separated by a non-conductive region. The non-conductive region can either be a
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
or an electrical insulator material known as a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an Insulator (electricity), electrical insulator that can be Polarisability, polarised by an applied electric field. When a dielectric material is placed in an electric field, electric ...
. Examples of dielectric media are glass, air, paper, plastic, ceramic, and even a
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
depletion region In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobil ...
chemically identical to the conductors. From
Coulomb's law Coulomb's inverse-square law, or simply Coulomb's law, is an experimental scientific law, law of physics that calculates the amount of force (physics), force between two electric charge, electrically charged particles at rest. This electric for ...
a charge on one conductor will exert a force on the
charge carrier In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. ...
s within the other conductor, attracting opposite polarity charge and repelling like polarity charges, thus an opposite polarity charge will be induced on the surface of the other conductor. The conductors thus hold equal and opposite charges on their facing surfaces, and the dielectric develops an electric field. An ideal capacitor is characterized by a constant
capacitance Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related ...
''C'', in
farad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units, International System of Units (SI), equivalent to 1 coulomb per volt (C/V). It is named afte ...
s in the SI system of units, defined as the ratio of the positive or negative charge ''Q'' on each conductor to the voltage ''V'' between them: C= \frac A capacitance of one
farad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units, International System of Units (SI), equivalent to 1 coulomb per volt (C/V). It is named afte ...
(F) means that one
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second, with the elementary charge ''e'' as a defining c ...
of charge on each conductor causes a voltage of one
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
across the device. Because the conductors (or plates) are close together, the opposite charges on the conductors attract one another due to their electric fields, allowing the capacitor to store more charge for a given voltage than when the conductors are separated, yielding a larger capacitance. In practical devices, charge build-up sometimes affects the capacitor mechanically, causing its capacitance to vary. In this case, capacitance is defined in terms of incremental changes: C= \frac


Hydraulic analogy

In the
hydraulic analogy Electronic–hydraulic analogies are the representation of electronic circuits by hydraulic circuits. Since electric current is invisible and the processes in play in electronics are often difficult to demonstrate, the various electronic compon ...
, voltage is analogous to water pressure and electrical current through a wire is analogous to water flow through a pipe. A capacitor is like an elastic diaphragm within the pipe. Although water cannot pass through the diaphragm, it moves as the diaphragm stretches or un-stretches. * Capacitance is analogous to diaphragm elasticity. In the same way that the ratio of charge differential to voltage would be greater for a larger capacitance value (C=Q / V ), the ratio of water displacement to pressure would be greater for a diaphragm that flexes more readily. * In an AC circuit, a capacitor behaves like a diaphragm in a pipe, allowing the charge to move on both sides of the dielectric while no electrons actually pass through. For DC circuits, a capacitor is analogous to a
hydraulic accumulator A hydraulic accumulator is a pressure storage reservoir in which an Incompressible flow, incompressible hydraulic fluid is held under pressure that is applied by an external Prime mover (engine), source of mechanical energy. The external source can ...
, storing the energy until pressure is released. Similarly, they can be used to smooth the flow of electricity in rectified DC circuits in the same way an accumulator damps surges from a hydraulic pump. * Charged capacitors and stretched diaphragms both store
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
. The more a capacitor is charged, the higher the voltage across the plates (V = Q / C ). Likewise, the greater the displaced water volume, the greater the elastic potential energy. * Electrical current affects the charge differential across a capacitor just as the flow of water affects the volume differential across a diaphragm. * Just as capacitors experience
dielectric breakdown In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All ...
when subjected to high voltages, diaphragms burst under extreme pressures. * Just as capacitors block DC while passing AC, diaphragms displace no water unless there is a change in pressure.


Circuit equivalence at short-time limit and long-time limit

In a circuit, a capacitor can behave differently at different time instants. However, it is usually easy to think about the short-time limit and long-time limit: * In the long-time limit, after the charging/discharging current has saturated the capacitor, no current would come into (or get out of) either side of the capacitor; Therefore, the long-time equivalence of capacitor is an open circuit. * In the short-time limit, if the capacitor starts with a certain voltage V, since the voltage drop on the capacitor is known at this instant, we can replace it with an ideal voltage source of voltage V. Specifically, if V=0 (capacitor is uncharged), the short-time equivalence of a capacitor is a short circuit.


Parallel-plate capacitor

The simplest model of a capacitor consists of two thin parallel conductive plates each with an area of A separated by a uniform gap of thickness d filled with a dielectric of
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
\varepsilon. It is assumed the gap d is much smaller than the dimensions of the plates. This model applies well to many practical capacitors which are constructed of metal sheets separated by a thin layer of insulating dielectric, since manufacturers try to keep the dielectric very uniform in thickness to avoid thin spots which can cause failure of the capacitor. Since the separation between the plates is uniform over the plate area, the electric field between the plates E is constant, and directed perpendicularly to the plate surface, except for an area near the edges of the plates where the field decreases because the electric field lines "bulge" out of the sides of the capacitor. This "fringing field" area is approximately the same width as the plate separation, d, and assuming d is small compared to the plate dimensions, it is small enough to be ignored. Therefore, if a charge of +Q is placed on one plate and -Q on the other plate (the situation for unevenly charged plates is discussed below), the charge on each plate will be spread evenly in a
surface charge A surface charge is an electric charge present on a two-dimensional surface. These electric charges are constrained on this 2-D surface, and surface charge density, measured in coulombs per square meter (C•m−2), is used to describe the charge ...
layer of constant
charge density In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in co ...
\sigma = \pm Q/A coulombs per square meter, on the inside surface of each plate. From Gauss's law the magnitude of the electric field between the plates is E = \sigma / \varepsilon. The voltage(difference) V between the plates is defined as the
line integral In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
of the electric field over a line (in the z-direction) from one plate to another V= \int_0^d E(z)\,\mathrmz = Ed = \fracd = \frac The capacitance is defined as C = Q/V. Substituting V above into this equation Therefore, in a capacitor the highest capacitance is achieved with a high
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
dielectric material, large plate area, and small separation between the plates. Since the area A of the plates increases with the square of the linear dimensions and the separation d increases linearly, the capacitance scales with the linear dimension of a capacitor (C \varpropto L), or as the cube root of the volume. A parallel plate capacitor can only store a finite amount of energy before
dielectric breakdown In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All ...
occurs. The capacitor's dielectric material has a dielectric strength ''U''d which sets the capacitor's breakdown voltage at . The maximum energy that the capacitor can store is therefore E = \frac CV^2 = \frac \frac \left(U_d d\right)^2 = \frac \varepsilon A d U_d^2 The maximum energy is a function of dielectric volume,
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
, and dielectric strength. Changing the plate area and the separation between the plates while maintaining the same volume causes no change of the maximum amount of energy that the capacitor can store, so long as the distance between plates remains much smaller than both the length and width of the plates. In addition, these equations assume that the electric field is entirely concentrated in the dielectric between the plates. In reality there are fringing fields outside the dielectric, for example between the sides of the capacitor plates, which increase the effective capacitance of the capacitor. This is sometimes called
parasitic capacitance Parasitic capacitance or stray capacitance is the unavoidable and usually unwanted capacitance that exists between the parts of an electronic component or circuit simply because of their proximity to each other. When two electrical conductors a ...
. For some simple capacitor geometries this additional capacitance term can be calculated analytically. It becomes negligibly small when the ratios of plate width to separation and length to separation are large. For unevenly charged plates: * If one plate is charged with Q_1 while the other is charged with Q_2, and if both plates are separated from other materials in the environment, then the inner surface of the first plate will have \frac, and the inner surface of the second plated will have -\frac charge. Therefore, the voltage V between the plates is V = \frac. Note that the outer surface of both plates will have \frac, but those charges do not affect the voltage between the plates. * If one plate is charged with Q_1 while the other is charged with Q_2, and if the second plate is connected to ground, then the inner surface of the first plate will have Q_1, and the inner surface of the second plated will have -Q_1. Therefore, the voltage V between the plates is V = \frac C. Note that the outer surface of both plates will have zero charge.


Interleaved capacitor

For n number of plates in a capacitor, the total capacitance would be C = \varepsilon_o\frac (n-1) where C = \varepsilon_o A / d is the capacitance for a single plate and n is the number of interleaved plates. As shown to the figure on the right, the interleaved plates can be seen as parallel plates connected to each other. Every pair of adjacent plates acts as a separate capacitor; the number of pairs is always one less than the number of plates, hence the (n-1) multiplier.


Energy stored in a capacitor

To increase the charge and voltage on a capacitor,
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an ani ...
must be done by an external power source to move charge from the negative to the positive plate against the opposing force of the electric field. If the voltage on the capacitor is V, the work dW required to move a small increment of charge dq from the negative to the positive plate is dW = Vdq. The energy is stored in the increased electric field between the plates. The total energy W stored in a capacitor (expressed in
joule The joule ( , or ; symbol: J) is the unit of energy in the International System of Units (SI). In terms of SI base units, one joule corresponds to one kilogram- metre squared per second squared One joule is equal to the amount of work d ...
s) is equal to the total work done in establishing the electric field from an uncharged state. W = \int_0^Q V(q) \, \mathrmq = \int_0^Q \frac \, \mathrmq = \frac \frac = \frac VQ = \frac C V^2 where Q is the charge stored in the capacitor, V is the voltage across the capacitor, and C is the capacitance. This potential energy will remain in the capacitor until the charge is removed. If charge is allowed to move back from the positive to the negative plate, for example by connecting a circuit with resistance between the plates, the charge moving under the influence of the electric field will do work on the external circuit. If the gap between the capacitor plates d is constant, as in the parallel plate model above, the electric field between the plates will be uniform (neglecting fringing fields) and will have a constant value E = V/d. In this case the stored energy can be calculated from the electric field strength W = \fracCV^2 = \frac\frac\left(Ed\right)^2 = \frac \varepsilon AdE^2 = \frac \varepsilon E^2 (\text) The last formula above is equal to the energy density per unit volume in the electric field multiplied by the volume of field between the plates, confirming that the energy in the capacitor is stored in its electric field.


Current–voltage relation

The current ''I''(''t'') through any component in an electric circuit is defined as the rate of flow of a charge ''Q''(''t'') passing through it. Actual charges – electrons – cannot pass through the dielectric of an ''ideal'' capacitor. Rather, one electron accumulates on the negative plate for each one that leaves the positive plate, resulting in an electron depletion and consequent positive charge on one electrode that is equal and opposite to the accumulated negative charge on the other. Thus the charge on the electrodes is equal to the
integral In mathematics, an integral is the continuous analog of a Summation, sum, which is used to calculate area, areas, volume, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental oper ...
of the current as well as proportional to the voltage, as discussed above. As with any
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a continuous function is a differentiable function whose derivative is equal to the original function . This can be stated ...
, a
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connecte ...
is added to represent the initial voltage ''V''(''t''0). This is the integral form of the capacitor equation: Taking the derivative of this and multiplying by ''C'' yields the derivative form: for independent of time, voltage and electric charge. The dual of the capacitor is the
inductor An inductor, also called a coil, choke, or reactor, is a Passivity (engineering), passive two-terminal electronic component, electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typic ...
, which stores energy in a
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
rather than an electric field. Its current-voltage relation is obtained by exchanging current and voltage in the capacitor equations and replacing with the inductance .


RC circuits

A series circuit containing only a
resistor A resistor is a passive two-terminal electronic component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active e ...
, a capacitor, a switch and a constant DC source of voltage is known as a ''charging circuit''. If the capacitor is initially uncharged while the switch is open, and the switch is closed at , it follows from
Kirchhoff's voltage law Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchh ...
that V_0 = v_\text(t) + v_\text(t) = i(t) R + \frac \int_^t i(\tau) \, \mathrm\tau Taking the derivative and multiplying by ''C'', gives a
first-order differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives ...
: RC \frac + i(t) = 0 At , the voltage across the capacitor is zero and the voltage across the resistor is ''V''0. The initial current is then . With this assumption, solving the differential equation yields \begin I(t) &= \frac e^ \\ V(t) &= V_0 \left( 1 - e^\right) \\ Q(t) &= C V_0 \left( 1 - e^\right) \end where is the ''
time constant In physics and engineering, the time constant, usually denoted by the Greek language, Greek letter (tau), is the parameter characterizing the response to a step input of a first-order, LTI system theory, linear time-invariant (LTI) system.Concre ...
'' of the system. As the capacitor reaches equilibrium with the source voltage, the voltages across the resistor and the current through the entire circuit decay exponentially. In the case of a ''discharging'' capacitor, the capacitor's initial voltage () replaces . The equations become \begin I(t) &= \frac e^ \\ V(t) &= V_ \, e^ \\ Q(t) &= C \, V_ \, e^ \end


AC circuits

Impedance, the vector sum of reactance and resistance, describes the phase difference and the ratio of amplitudes between sinusoidally varying voltage and sinusoidally varying current at a given frequency.
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fo ...
allows any signal to be constructed from a
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of frequencies, whence the circuit's reaction to the various frequencies may be found. The reactance and impedance of a capacitor are respectively \begin X &= -\frac = -\frac \\ Z &= \frac = -\frac = -\frac \end where is the
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
and is the
angular frequency In physics, angular frequency (symbol ''ω''), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine ...
of the sinusoidal signal. The phase indicates that the AC voltage lags the AC current by 90°: the positive current phase corresponds to increasing voltage as the capacitor charges; zero current corresponds to instantaneous constant voltage, etc. Impedance decreases with increasing capacitance and increasing frequency. This implies that a higher-frequency signal or a larger capacitor results in a lower voltage amplitude per current amplitude – an AC "short circuit" or AC coupling. Conversely, for very low frequencies, the reactance is high, so that a capacitor is nearly an open circuit in AC analysis – those frequencies have been "filtered out". Capacitors are different from resistors and inductors in that the impedance is ''inversely'' proportional to the defining characteristic; i.e.,
capacitance Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related ...
. A capacitor connected to an alternating voltage source has a displacement current to flowing through it. In the case that the voltage source is ''V''0cos(ωt), the displacement current can be expressed as: I = C \frac = -\omega \sin(\omega t) At , the capacitor has a maximum (or peak) current whereby . The ratio of peak voltage to peak current is due to
capacitive reactance In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. It's measured in Ω (Ohms). Along with resistance, it is one of two elements of impedance; however, while both elements involve ...
(denoted XC). X_C = \frac = \frac = \frac XC approaches zero as approaches infinity. If XC approaches 0, the capacitor resembles a short wire that strongly passes current at high frequencies. XC approaches infinity as ω approaches zero. If XC approaches infinity, the capacitor resembles an open circuit that poorly passes low frequencies. The current of the capacitor may be expressed in the form of cosines to better compare with the voltage of the source: I = - I_0 \sin() = I_0 \cos( + ) In this situation, the current is out of
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
with the voltage by +π/2 radians or +90 degrees, i.e. the current leads the voltage by 90°.


Laplace circuit analysis (s-domain)

When using the
Laplace transform In mathematics, the Laplace transform, named after Pierre-Simon Laplace (), is an integral transform that converts a Function (mathematics), function of a Real number, real Variable (mathematics), variable (usually t, in the ''time domain'') to a f ...
in circuit analysis, the impedance of an ideal capacitor with no initial charge is represented in the domain by: Z(s) = \frac where * is the capacitance, and * is the complex frequency.


Circuit analysis

;Capacitors in parallel :Capacitors in a parallel configuration each have the same applied voltage. Their capacitance values add up. Charge is apportioned among them by capacitance value. Using the schematic diagram to visualize parallel plates, it is apparent that each capacitor contributes to the total surface area. C_\mathrm = \sum_^n C_i = C_1 + C_2 + \cdots + C_n
;For capacitors in series :Connected in series, the schematic diagram reveals that the separation distance, not the plate area, adds up. The capacitors each store instantaneous charge build-up equal to that of every other capacitor in the series. The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor ''smaller'' than any of its components. C_\mathrm = \left(\sum_^n\frac\right)^ = \left( + + + \dots + \right)^ :Capacitors are combined in series to achieve a higher working voltage, for example for smoothing a high voltage power supply. The voltage ratings, which are based on plate separation, add up, if capacitance and leakage currents for each capacitor are identical. In such an application, on occasion, series strings are connected in parallel, forming a matrix. The goal is to maximize the energy storage of the network without overloading any capacitor. For high-energy storage with capacitors in series, some safety considerations must be applied to ensure one capacitor failing and leaking current does not apply too much voltage to the other series capacitors. :Series connection is also sometimes used to adapt polarized
electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
s for bipolar AC use. ;Voltage distribution in parallel-to-series networks. :To model the distribution of voltages from a single charged capacitor \left( A \right) connected in parallel to a chain of capacitors in series \left( B_\text \right) : \begin \text A_\mathrm &= A\left(1 - \frac\right) \\ \text B_\text &= \frac \left(1 - \frac\right) \\ A - B &= 0 \end :Note: This is only correct if all capacitance values are equal. :The power transferred in this arrangement is: P = \frac \cdot \frac A_\text \left( A_\text + B_\text \right)


Non-ideal behavior

In practice, capacitors deviate from the ideal capacitor equation in several aspects. Some of these, such as leakage current and parasitic effects are linear, or can be analyzed as nearly linear, and can be accounted for by adding virtual components to form an equivalent circuit. The usual methods of network analysis can then be applied. In other cases, such as with breakdown voltage, the effect is non-linear and ordinary (normal, e.g., linear) network analysis cannot be used, the effect must be considered separately. Yet another group of artifacts may exist, including temperature dependence, that may be linear but invalidates the assumption in the analysis that capacitance is a constant. Finally, combined parasitic effects such as inherent inductance, resistance, or dielectric losses can exhibit non-uniform behavior at varying frequencies of operation.


Breakdown voltage

Above a particular electric field strength, known as the dielectric strength ''Eds'', the dielectric in a capacitor becomes conductive. The voltage at which this occurs is called the breakdown voltage of the device, and is given by the product of the dielectric strength and the separation between the conductors, V_= E_ d The maximum energy that can be stored safely in a capacitor is limited by the breakdown voltage. Exceeding this voltage can result in a short circuit between the plates, which can often cause permanent damage to the dielectric, plates, or both. Due to the scaling of capacitance and breakdown voltage with dielectric thickness, all capacitors made with a particular dielectric have approximately equal maximum
energy density In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measure ...
, to the extent that the dielectric dominates their volume. For air dielectric capacitors the breakdown field strength is of the order 2–5 MV/m (or kV/mm); for
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into fragile elastic plates. This characteristic is described as ''perfect basal cleavage''. Mica is co ...
the breakdown is 100–300 MV/m; for oil, 15–25 MV/m; it can be much less when other materials are used for the dielectric. The dielectric is used in very thin layers and so absolute breakdown voltage of capacitors is limited. Typical ratings for capacitors used for general
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
applications range from a few volts to 1 kV. As the voltage increases, the dielectric must be thicker, making high-voltage capacitors larger per capacitance than those rated for lower voltages. The breakdown voltage is critically affected by factors such as the geometry of the capacitor conductive parts; sharp edges or points increase the electric field strength at that point and can lead to a local breakdown. Once this starts to happen, the breakdown quickly tracks through the dielectric until it reaches the opposite plate, leaving carbon behind and causing a short (or relatively low resistance) circuit. The results can be explosive, as the short in the capacitor draws current from the surrounding circuitry and dissipates the energy. However, in capacitors with particular dielectrics and thin metal electrodes, shorts are not formed after breakdown. It happens because a metal melts or evaporates in a breakdown vicinity, isolating it from the rest of the capacitor. The usual breakdown route is that the field strength becomes large enough to pull electrons in the dielectric from their atoms thus causing conduction. Other scenarios are possible, such as impurities in the dielectric, and, if the dielectric is of a crystalline nature, imperfections in the crystal structure can result in an
avalanche breakdown Avalanche breakdown (or the avalanche effect) is a phenomenon that can occur in both insulating and semiconducting materials. It is a form of electric current multiplication that can allow very large currents within materials which are otherwis ...
as seen in semi-conductor devices. Breakdown voltage is also affected by pressure, humidity and temperature.


Equivalent circuit

An ideal capacitor only stores and releases electrical energy, without dissipation. In practice, capacitors have imperfections within the capacitor's materials that result in the following parasitic components: * \text, the ''
equivalent series inductance Equivalent series inductance (ESL) is an effective inductance that is used to describe the inductive part of the Electrical impedance, impedance of certain electrical components. Overview The theoretical treatment of devices such as capacitors a ...
,'' due to the leads. This is usually significant only at relatively high frequencies. * Two resistances that add a
real-valued In mathematics, value may refer to several, strongly related notions. In general, a mathematical value may be any definite mathematical object. In elementary mathematics, this is most often a number – for example, a real number such as or an ...
component to the total impedance, which wastes power: ** R_\text, a small series resistance in the
leads Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
. Becomes more relevant as frequency increases. ** G_\text, a small conductance (or reciprocally, a large resistance) in parallel with the capacitance, to account for imperfect dielectric material. This causes a small leakage current across the dielectric (see ) that slowly discharges the capacitor over time. This conductance dominates the total resistance at very low frequencies. Its value varies greatly depending on the capacitor material and quality.


Simplified RLC series model

As frequency increases, the capacitive impedance (a negative reactance) reduces, so the dielectric's conductance becomes less important and the series components become more significant. Thus, a simplified RLC series model valid for a large frequency range simply treats the capacitor as being in series with an equivalent series inductance \text and a frequency-dependent ''
equivalent series resistance Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance. However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a re ...
'' \text, which varies little with frequency. Unlike the previous model, this model is not valid at DC and very low frequencies where G_\text is relevant. Inductive reactance increases with frequency. Because its sign is positive, it counteracts the capacitance. At the RLC circuit's
natural frequency Natural frequency, measured in terms of '' eigenfrequency'', is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring ...
\omega_0 \tfrac, the inductance perfectly cancels the capacitance, so total reactance is zero. Since the total impedance at \omega_0 is just the real-value of \text, average power dissipation reaches its maximum of , where V is the root mean square (RMS) voltage across the capacitor. At even higher frequencies, the inductive impedance dominates, so the capacitor undesirably behaves instead like an inductor. High-frequency engineering involves accounting for the inductance of all connections and components.


= Q factor

= For a simplified model of a capacitor as an ideal capacitor in series with an
equivalent series resistance Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance. However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a re ...
\text, the capacitor's
quality factor In physics and engineering, the quality factor or factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in ...
(or ''Q'') is the ratio of the magnitude of its
capacitive reactance In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. It's measured in Ω (Ohms). Along with resistance, it is one of two elements of impedance; however, while both elements involve ...
X_C to its resistance at a given
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
\omega: Q(\omega) = \frac=\frac \, . The Q factor is a measure of its efficiency: the higher the Q factor of the capacitor, the closer it approaches the behavior of an ideal capacitor. Dissipation factor is its reciprocal.


Ripple current

Ripple current is the AC component of an applied source (often a
switched-mode power supply A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to electric power conversio ...
) whose frequency may be constant or varying. Ripple current causes heat to be generated within the capacitor due to the dielectric losses caused by the changing field strength together with the current flow across the slightly resistive supply lines or the electrolyte in the capacitor. The equivalent series resistance (ESR) is the amount of internal series resistance one would add to a perfect capacitor to model this. Some
types of capacitor Type may refer to: Science and technology Computing * Typing, producing text via a keyboard, typewriter, etc. * Data type, collection of values used for computations. * File type * TYPE (DOS command), a command to display contents of a file. * Ty ...
s, primarily
tantalum Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
and
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
s, as well as some film capacitors have a specified rating value for maximum ripple current. * Tantalum electrolytic capacitors with solid manganese dioxide electrolyte are limited by ripple current and generally have the highest ESR ratings in the capacitor family. Exceeding their ripple limits can lead to shorts and burning parts. * Aluminum electrolytic capacitors, the most common type of electrolytic, suffer a shortening of life expectancy at higher ripple currents. If ripple current exceeds the rated value of the capacitor, it tends to result in explosive failure. * Ceramic capacitors generally have no ripple current limitation and have some of the lowest ESR ratings. * Film capacitors have very low ESR ratings but exceeding rated ripple current may cause degradation failures.


Capacitance instability

The capacitance of certain capacitors decreases as the component ages. In ceramic capacitors, this is caused by degradation of the dielectric. The type of dielectric, ambient operating and storage temperatures are the most significant aging factors, while the operating voltage usually has a smaller effect, i.e., usual capacitor design is to minimize voltage coefficient. The aging process may be reversed by heating the component above the
Curie point In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their magnet, permanent magnetic properties, which can (in most cases) be replaced by magnetization, induced ...
. Aging is fastest near the beginning of life of the component, and the device stabilizes over time. Electrolytic capacitors age as the electrolyte evaporates. In contrast with ceramic capacitors, this occurs towards the end of life of the component. Temperature dependence of capacitance is usually expressed in parts per million (ppm) per °C. It can usually be taken as a broadly linear function but can be noticeably non-linear at the temperature extremes. The temperature coefficient may be positive or negative, depending mostly on the dielectric material. Some, designated C0G/NP0, but called NPO, have a somewhat negative coefficient at one temperature, positive at another, and zero in between. Such components may be specified for temperature-critical circuits. Capacitors, especially ceramic capacitors, and older designs such as paper capacitors, can absorb sound waves resulting in a microphonic effect. Vibration moves the plates, causing the capacitance to vary, in turn inducing AC current. Some dielectrics also generate
piezoelectricity Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The piezoel ...
. The resulting interference is especially problematic in audio applications, potentially causing feedback or unintended recording. In the reverse microphonic effect, the varying electric field between the capacitor plates exerts a physical force, moving them as a speaker. This can generate audible sound, but drains energy and stresses the dielectric and the electrolyte, if any.


Current and voltage reversal

Current reversal occurs when the current changes direction. Voltage reversal is the change of polarity in a circuit. Reversal is generally described as the percentage of the maximum rated voltage that reverses polarity. In DC circuits, this is usually less than 100%, often in the range of 0 to 90%, whereas AC circuits experience 100% reversal. In DC circuits and pulsed circuits, current and voltage reversal are affected by the
damping In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include ...
of the system. Voltage reversal is encountered in
RLC circuits An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent compone ...
that are underdamped. The current and voltage reverse direction, forming a
harmonic oscillator In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force ''F'' proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive const ...
between the
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the ...
and capacitance. The current and voltage tends to oscillate and may reverse direction several times, with each peak being lower than the previous, until the system reaches an equilibrium. This is often referred to as ringing. In comparison, critically damped or overdamped systems usually do not experience a voltage reversal. Reversal is also encountered in AC circuits, where the peak current is equal in each direction. For maximum life, capacitors usually need to be able to handle the maximum amount of reversal that a system may experience. An AC circuit experiences 100% voltage reversal, while underdamped DC circuits experience less than 100%. Reversal creates excess electric fields in the dielectric, causes excess heating of both the dielectric and the conductors, and can dramatically shorten the life expectancy of the capacitor. Reversal ratings often affect the design considerations for the capacitor, from the choice of dielectric materials and voltage ratings to the types of internal connections used.


Dielectric absorption

Capacitors made with any type of dielectric material show some level of " dielectric absorption" or "soakage". On discharging a capacitor and disconnecting it, after a short time it may develop a voltage due to hysteresis in the dielectric. This effect is objectionable in applications such as precision
sample and hold In electronics, a sample and hold (also known as sample and follow) circuit is an analog device that samples (captures, takes) the voltage of a continuously varying analog signal and holds (locks, freezes) its value at a constant level for a ...
circuits or timing circuits. The level of absorption depends on many factors, from design considerations to charging time, since the absorption is a time-dependent process. However, the primary factor is the type of dielectric material. Capacitors such as tantalum electrolytic or
polysulfone Polysulfones are a family of high performance thermoplastics. These polymers are known for their toughness and stability at high temperatures. Technically used polysulfones contain an aryl- SO2-aryl subunit. Due to the high cost of raw material ...
film exhibit relatively high absorption, while
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It i ...
or
Teflon Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a spin-off from ...
allow very small levels of absorption. In some capacitors where dangerous voltages and energies exist, such as in
flashtube A flashtube (flashlamp) produces an electrostatic discharge with an extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when tr ...
s,
television set A television set or television receiver (more commonly called TV, TV set, television, telly, or tele) is an electronic device for viewing and hearing television broadcasts, or as a computer monitor. It combines a tuner, display, and loudspeake ...
s,
microwave oven A microwave oven, or simply microwave, is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces Dipole#Molecular dipoles, polar molecules in the food to rotate and ...
s and
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). Defibrillation delivers a dose of electric current (often called a ''count ...
s, the dielectric absorption can recharge the capacitor to hazardous voltages after it has been shorted or discharged. Any capacitor containing over 10 joules of energy is generally considered hazardous, while 50 joules or higher is potentially lethal. A capacitor may regain anywhere from 0.01 to 20% of its original charge over a period of several minutes, allowing a seemingly safe capacitor to become surprisingly dangerous.


Leakage

No material is a perfect insulator, thus all dielectrics allow some small level of current to leak through, which can be measured with a megohmmeter. Leakage is equivalent to a resistor in parallel with the capacitor. Constant exposure to factors such as heat, mechanical stress, or humidity can cause the dielectric to deteriorate resulting in excessive leakage, a problem often seen in older vacuum tube circuits, particularly where oiled paper and foil capacitors were used. In many vacuum tube circuits, interstage coupling capacitors are used to conduct a varying signal from the plate of one tube to the grid circuit of the next stage. A leaky capacitor can cause the grid circuit voltage to be raised from its normal bias setting, causing excessive current or signal distortion in the downstream tube. In power amplifiers this can cause the plates to glow red, or current limiting resistors to overheat, even fail. Similar considerations apply to component fabricated solid-state (transistor) amplifiers, but, owing to lower heat production and the use of modern polyester dielectric-barriers, this once-common problem has become relatively rare.


Electrolytic failure from disuse

Aluminum electrolytic capacitor Aluminium electrolytic capacitors are (usually) polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminium foil with an etching, etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by ano ...
s are ''conditioned'' when manufactured by applying a voltage sufficient to initiate the proper internal chemical state. This state is maintained by regular use of the equipment. If a system using electrolytic capacitors is unused for a long period of time it can lose its conditioning. Sometimes they fail with a short circuit when next operated.


Lifespan

All capacitors have varying lifespans, depending upon their construction, operational conditions, and environmental conditions. Solid-state ceramic capacitors generally have very long lives under normal use, which has little dependency on factors such as vibration or ambient temperature, but factors like humidity, mechanical stress, and
fatigue Fatigue is a state of tiredness (which is not sleepiness), exhaustion or loss of energy. It is a signs and symptoms, symptom of any of various diseases; it is not a disease in itself. Fatigue (in the medical sense) is sometimes associated wit ...
play a primary role in their failure. Failure modes may differ. Some capacitors may experience a gradual loss of capacitance, increased leakage or an increase in
equivalent series resistance Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance. However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a re ...
(ESR), while others may fail suddenly or even catastrophically. For example, metal-film capacitors are more prone to damage from stress and humidity, but will self-heal when a breakdown in the dielectric occurs. The formation of a
glow discharge A glow discharge is a Plasma (physics), plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a va ...
at the point of failure prevents arcing by vaporizing the metallic film in that spot, neutralizing any short circuit with minimal loss in capacitance. When enough pinholes accumulate in the film, a total failure occurs in a metal-film capacitor, generally happening suddenly without warning. Electrolytic capacitors generally have the shortest lifespans. Electrolytic capacitors are affected very little by vibration or humidity, but factors such as ambient and operational temperatures play a large role in their failure, which gradually occur as an increase in ESR (up to 300%) and as much as a 20% decrease in capacitance. The capacitors contain electrolytes which will eventually diffuse through the seals and evaporate. An increase in temperature also increases internal pressure, and increases the reaction rate of the chemicals. Thus, the life of an electrolytic capacitor is generally defined by a modification of the
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 188 ...
, which is used to determine chemical-reaction rates: L = B e^ Manufacturers often use this equation to supply an expected lifespan, in hours, for electrolytic capacitors when used at their designed operating temperature, which is affected by both ambient temperature, ESR, and ripple current. However, these ideal conditions may not exist in every use. The rule of thumb for predicting lifespan under different conditions of use is determined by: L_a = L_0 2^ This says that the capacitor's life decreases by half for every 10 degrees Celsius that the temperature is increased, where: * L_0 is the rated life under rated conditions, e.g. 2000 hours * T_0 is the rated max/min operational temperature * T_a is the average operational temperature * L_a is the expected lifespan under given conditions


Capacitor types

Practical capacitors are available commercially in many different forms. The type of internal dielectric, the structure of the plates and the device packaging all strongly affect the characteristics of the capacitor, and its applications. Values available range from very low (picofarad range; while arbitrarily low values are in principle possible, stray (parasitic) capacitance in any circuit is the limiting factor) to about 5 kF supercapacitors. Above approximately 1 microfarad electrolytic capacitors are usually used because of their small size and low cost compared with other types, unless their relatively poor stability, life and polarised nature make them unsuitable. Very high capacity supercapacitors use a porous carbon-based electrode material.


Dielectric materials

Most capacitors have a dielectric spacer, which increases their capacitance compared to air or a vacuum. In order to maximise the charge that a capacitor can hold, the dielectric material needs to have as high a
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
as possible, while also having as high a
breakdown voltage The breakdown voltage of an insulator (electrical), insulator is the minimum voltage that causes a portion of an insulator to experience electrical breakdown and become electrically Conductor (material), conductive. For diodes, the breakdown vo ...
as possible. The dielectric also needs to have as low a loss with frequency as possible. However, low value capacitors are available with a high vacuum between their plates to allow extremely high voltage operation and low losses.
Variable capacitor A variable capacitor is a capacitor whose capacitance may be intentionally and repeatedly changed mechanically or electronically. Variable capacitors are often used in LC circuit, L/C circuits to set the resonance frequency, e.g. to tune a ra ...
s with their plates open to the atmosphere were commonly used in radio tuning circuits. Later designs use polymer foil dielectric between the moving and stationary plates, with no significant air space between the plates. Several solid dielectrics are available, including
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses, Feces#Other uses, herbivore dung, or other vegetable sources in water. Once the water is dra ...
,
plastic Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
,
glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
,
mica Micas ( ) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into fragile elastic plates. This characteristic is described as ''perfect basal cleavage''. Mica is co ...
and
ceramic A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
. Paper was used extensively in older capacitors and offers relatively high voltage performance. However, paper absorbs moisture, and has been largely replaced by plastic film capacitors. Most of the plastic films now used offer better stability and ageing performance than such older dielectrics such as oiled paper, which makes them useful in timer circuits, although they may be limited to relatively low
operating temperature An operating temperature is the allowable temperature range of the local ambient environment at which an electrical or mechanical device operates. The device will operate effectively within a specified temperature range which varies based on the de ...
s and frequencies, because of the limitations of the plastic film being used. Large plastic film capacitors are used extensively in suppression circuits, motor start circuits, and
power-factor correction In electrical engineering, the power factor of an AC power system is defined as the ratio of the ''real power'' absorbed by the load to the ''apparent power'' flowing in the circuit. Real power is the average of the instantaneous product of vol ...
circuits. Ceramic capacitors are generally small, cheap and useful for high frequency applications, although their capacitance varies strongly with voltage and temperature and they age poorly. They can also suffer from the piezoelectric effect. Ceramic capacitors are broadly categorized as class 1 dielectrics, which have predictable variation of capacitance with temperature or class 2 dielectrics, which can operate at higher voltage. Modern multilayer ceramics are usually quite small, but some types have inherently wide value tolerances, microphonic issues, and are usually physically brittle. Glass and mica capacitors are extremely reliable, stable and tolerant to high temperatures and voltages, but are too expensive for most mainstream applications. Electrolytic capacitors and
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s are used to store small and larger amounts of energy, respectively, ceramic capacitors are often used in
resonators A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonat ...
, and
parasitic capacitance Parasitic capacitance or stray capacitance is the unavoidable and usually unwanted capacitance that exists between the parts of an electronic component or circuit simply because of their proximity to each other. When two electrical conductors a ...
occurs in circuits wherever the simple conductor-insulator-conductor structure is formed unintentionally by the configuration of the circuit layout.
Electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
s use an
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
or
tantalum Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
plate with an oxide dielectric layer. The second electrode is a liquid
electrolyte An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
, connected to the circuit by another foil plate. Electrolytic capacitors offer very high capacitance but suffer from poor tolerances, high instability, gradual loss of capacitance especially when subjected to heat, and high leakage current. Poor quality capacitors may leak electrolyte, which is harmful to printed circuit boards. The conductivity of the electrolyte drops at low temperatures, which increases equivalent series resistance. While widely used for power-supply conditioning, poor high-frequency characteristics make them unsuitable for many applications. Electrolytic capacitors suffer from self-degradation if unused for a period (around a year), and when full power is applied may short circuit, permanently damaging the capacitor and usually blowing a fuse or causing failure of rectifier diodes. For example, in older equipment, this may cause arcing in rectifier tubes. They can be restored before use by gradually applying the operating voltage, often performed on antique
vacuum tube A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. It ...
equipment over a period of thirty minutes by using a variable transformer to supply AC power. The use of this technique may be less satisfactory for some solid state equipment, which may be damaged by operation below its normal power range, requiring that the power supply first be isolated from the consuming circuits. Such remedies may not be applicable to modern high-frequency power supplies as these produce full output voltage even with reduced input. Tantalum capacitors offer better frequency and temperature characteristics than aluminum, but higher dielectric absorption and leakage. Polymer capacitors (OS-CON, OC-CON, KO, AO) use solid conductive polymer (or polymerized organic semiconductor) as electrolyte and offer longer life and lower ESR at higher cost than standard electrolytic capacitors. A feedthrough capacitor is a component that, while not serving as its main use, has capacitance and is used to conduct signals through a conductive sheet. Several other types of capacitor are available for specialist applications.
Supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s store large amounts of energy. Supercapacitors made from carbon
aerogel Aerogels are a class of manufacturing, synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid wit ...
, carbon nanotubes, or highly porous electrode materials, offer extremely high capacitance (up to 5 kF ) and can be used in some applications instead of
rechargeable batteries A rechargeable battery, storage battery, or secondary cell (formally a type of energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or prima ...
.
Alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
capacitors are specifically designed to work on line (mains) voltage AC power circuits. They are commonly used in
electric motor An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a electromagnetic coil, wire winding to gene ...
circuits and are often designed to handle large currents, so they tend to be physically large. They are usually ruggedly packaged, often in metal cases that can be easily grounded/earthed. They also are designed with
direct current Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
breakdown voltages of at least five times the maximum AC voltage.


Voltage-dependent capacitors

The dielectric constant for a number of very useful dielectrics changes as a function of the applied electrical field, for example
ferroelectric In physics and materials science, ferroelectricity is a characteristic of certain materials that have a spontaneous electric polarization that can be reversed by the application of an external electric field. All ferroelectrics are also piezoel ...
materials, so the capacitance for these devices is more complex. For example, in charging such a capacitor the differential increase in voltage with charge is governed by: dQ = C(V) \, dV where the voltage dependence of capacitance, , suggests that the capacitance is a function of the electric field strength, which in a large area parallel plate device is given by . This field polarizes the dielectric, which polarization, in the case of a ferroelectric, is a nonlinear ''S''-shaped function of the electric field, which, in the case of a large area parallel plate device, translates into a capacitance that is a nonlinear function of the voltage. Corresponding to the voltage-dependent capacitance, to charge the capacitor to voltage an integral relation is found: Q = \int_0^V C(V) \, dV which agrees with only when does not depend on voltage . By the same token, the energy stored in the capacitor now is given by dW = Q \, dV =\left \int_0^V dV' \, C(V') \rightdV \, . Integrating: W = \int_0^V dV \int_0^V dV' \, C(V') = \int_0^V dV' \int_^V dV \, C(V') = \int_0^V dV' \left(V-V'\right) C(V') \, , where interchange of the order of integration is used. The nonlinear capacitance of a microscope probe scanned along a ferroelectric surface is used to study the domain structure of ferroelectric materials. Another example of voltage dependent capacitance occurs in
semiconductor devices A semiconductor device is an electronic component that relies on the electronics, electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its co ...
such as semiconductor
diode A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
s, where the voltage dependence stems not from a change in dielectric constant but in a voltage dependence of the spacing between the charges on the two sides of the capacitor. This effect is intentionally exploited in diode-like devices known as varicaps.


Frequency-dependent capacitors

If a capacitor is driven with a time-varying voltage that changes rapidly enough, at some frequency the polarization of the dielectric cannot follow the voltage. As an example of the origin of this mechanism, the internal microscopic dipoles contributing to the dielectric constant cannot move instantly, and so as frequency of an applied alternating voltage increases, the dipole response is limited and the dielectric constant diminishes. A changing dielectric constant with frequency is referred to as dielectric dispersion, and is governed by
dielectric relaxation In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the materia ...
processes, such as Debye relaxation. Under transient conditions, the displacement field can be expressed as (see
electric susceptibility In electricity (electromagnetism), the electric susceptibility (\chi_; Latin: ''susceptibilis'' "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applie ...
): \boldsymbol=\varepsilon_0\int_^t \varepsilon_r (t-t') \boldsymbol E (t')\, dt' , indicating the lag in response by the time dependence of , calculated in principle from an underlying microscopic analysis, for example, of the dipole behavior in the dielectric. See, for example,
linear response function A linear response function describes the input-output relationship of a signal transducer, such as a radio turning electromagnetic waves into music or a neuron turning synaptic input into a response. Because of its many applications in informatio ...
. The integral extends over the entire past history up to the present time. A
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
in time then results in: \boldsymbol D(\omega) = \varepsilon_0 \varepsilon_r(\omega) \boldsymbol E (\omega)\, , where ''ε''r(''ω'') is now a
complex function Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic g ...
, with an imaginary part related to absorption of energy from the field by the medium. See
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more ...
. The capacitance, being proportional to the dielectric constant, also exhibits this frequency behavior. Fourier transforming Gauss's law with this form for displacement field: \begin I(\omega) &= j\omega Q(\omega) = j\omega \oint_ \boldsymbol D (\boldsymbol r , \omega)\cdot d \boldsymbol \\ &=\left G(\omega) + j \omega C(\omega)\rightV(\omega) = \frac \, , \end where is the
imaginary unit The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
, is the voltage component at angular frequency , is the ''real'' part of the current, called the ''conductance'', and determines the ''imaginary'' part of the current and is the ''capacitance''. is the complex impedance. When a parallel-plate capacitor is filled with a dielectric, the measurement of dielectric properties of the medium is based upon the relation: \varepsilon_r(\omega) = \varepsilon '_r(\omega) - j \varepsilon ''_r(\omega) = \frac = \frac \, , where a single ''prime'' denotes the real part and a double ''prime'' the imaginary part, is the complex impedance with the dielectric present, is the so-called ''complex'' capacitance with the dielectric present, and is the capacitance without the dielectric. (Measurement "without the dielectric" in principle means measurement in
free space A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
, an unattainable goal inasmuch as even the
quantum vacuum In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. However, the quantum vacuum is not a simple ...
is predicted to exhibit nonideal behavior, such as
dichroism In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours) (not to be confused with Dispersion (optics), dispersion), or one in which light rays having different P ...
. For practical purposes, when measurement errors are taken into account, often a measurement in terrestrial vacuum, or simply a calculation of ''C''0, is sufficiently accurate.) Using this measurement method, the dielectric constant may exhibit a
resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
at certain frequencies corresponding to characteristic response frequencies (excitation energies) of contributors to the dielectric constant. These resonances are the basis for a number of experimental techniques for detecting defects. The ''conductance method'' measures absorption as a function of frequency. Alternatively, the time response of the capacitance can be used directly, as in '' deep-level transient spectroscopy''. Another example of frequency dependent capacitance occurs with MOS capacitors, where the slow generation of minority carriers means that at high frequencies the capacitance measures only the majority carrier response, while at low frequencies both types of carrier respond. At optical frequencies, in semiconductors the dielectric constant exhibits structure related to the band structure of the solid. Sophisticated modulation spectroscopy measurement methods based upon modulating the crystal structure by pressure or by other stresses and observing the related changes in absorption or reflection of light have advanced our knowledge of these materials.


Styles

The arrangement of plates and dielectric has many variations in different styles depending on the desired ratings of the capacitor. For small values of capacitance (microfarads and less), ceramic disks use metallic coatings, with wire leads bonded to the coating. Larger values can be made by multiple stacks of plates and disks. Larger value capacitors usually use a metal foil or metal film layer deposited on the surface of a dielectric film to make the plates, and a dielectric film of impregnated
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses, Feces#Other uses, herbivore dung, or other vegetable sources in water. Once the water is dra ...
or plasticthese are rolled up to save space. To reduce the series resistance and inductance for long plates, the plates and dielectric are staggered so that connection is made at the common edge of the rolled-up plates, not at the ends of the foil or metalized film strips that comprise the plates. The assembly is encased to prevent moisture entering the dielectricearly radio equipment used a cardboard tube sealed with wax. Modern paper or film dielectric capacitors are dipped in a hard thermoplastic. Large capacitors for high-voltage use may have the roll form compressed to fit into a rectangular metal case, with bolted terminals and bushings for connections. The dielectric in larger capacitors is often impregnated with a liquid to improve its properties. Capacitors may have their connecting leads arranged in many configurations, for example axially or radially. "Axial" means that the leads are on a common axis, typically the axis of the capacitor's cylindrical bodythe leads extend from opposite ends. Radial leads are rarely aligned along radii of the body's circle, so the term is conventional. The leads (until bent) are usually in planes parallel to that of the flat body of the capacitor, and extend in the same direction; they are often parallel as manufactured. Small, cheap discoidal ceramic capacitors have existed from the 1930s onward, and remain in widespread use. After the 1980s, surface mount packages for capacitors have been widely used. These packages are extremely small and lack connecting leads, allowing them to be soldered directly onto the surface of
printed circuit boards A printed circuit board (PCB), also called printed wiring board (PWB), is a laminated sandwich structure of conductive and insulating layers, each with a pattern of traces, planes and other features (similar to wires on a flat surface) ...
. Surface mount components avoid undesirable high-frequency effects due to the leads and simplify automated assembly, although manual handling is made difficult due to their small size. Mechanically controlled variable capacitors allow the plate spacing to be adjusted, for example by rotating or sliding a set of movable plates into alignment with a set of stationary plates. Low cost variable capacitors squeeze together alternating layers of aluminum and plastic with a
screw A screw is an externally helical threaded fastener capable of being tightened or released by a twisting force (torque) to the screw head, head. The most common uses of screws are to hold objects together and there are many forms for a variety ...
. Electrical control of capacitance is achievable with
varactor A varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode designed to exploit the voltage-dependent capacitance of a reverse-biased p–n junction. Applications Varactors are used ...
s (or varicaps), which are reverse-biased semiconductor diodes whose depletion region width varies with applied voltage. They are used in
phase-locked loops A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and ou ...
, amongst other applications.


Capacitor markings


Marking codes for larger parts

Most capacitors have designations printed on their bodies to indicate their electrical characteristics. Larger capacitors, such as electrolytic types usually display the capacitance as value with explicit unit, for example, ''220 μF''. For typographical reasons, some manufacturers print ''MF'' on capacitors to indicate microfarads (μF).


Three-/four-character marking code for small capacitors

Smaller capacitors, such as ceramic types, often use a shorthand-notation consisting of three digits and an optional letter, where the digits (''XYZ'') denote the capacitance in
picofarad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI), equivalent to 1 coulomb per volt (C/V). It is named after the English physicist Michae ...
(pF), calculated as ''XY'' × 10''Z'', and the letter indicating the tolerance. Common tolerances are ±5%, ±10%, and ±20%, denotes as J, K, and M, respectively. A capacitor may also be labeled with its working voltage, temperature, and other relevant characteristics. Example: A capacitor labeled or designated as ''473K 330V'' has a capacitance of = 47 nF (±10%) with a maximum working voltage of 330 V. The working voltage of a capacitor is nominally the highest voltage that may be applied across it without undue risk of breaking down the dielectric layer.


Two-character marking code for small capacitors

For capacitances following the E3, E6, E12 or
E24 series The E series is a system of preferred numbers (also called preferred values) derived for use in electronic components. It consists of the E3, E6, E12, E24, E48, E96 and E192 series, where the number after the 'E' designates the quantity of ...
of preferred values, the former ANSI/EIA-198-D:1991, ANSI/EIA-198-1-E:1998 and ANSI/EIA-198-1-F:2002 as well as the amendment IEC 60062:2016/AMD1:2019 to IEC 60062 define a ''special two-character marking code for capacitors'' for very small parts which leave no room to print the above-mentioned three-/four-character code onto them. The code consists of an uppercase letter denoting the two significant digits of the value followed by a digit indicating the multiplier. The EIA standard also defines a number of lowercase letters to specify a number of values not found in E24.


RKM code

The
RKM code The RKM code, also referred to as "letter and numeral code for resistance and capacitance values and tolerances", "letter and digit code for resistance and capacitance values and tolerances", or informally as "R notation" is a notation to speci ...
following
IEC 60062 The RKM code, also referred to as "letter and numeral code for resistance and capacitance values and tolerances", "letter and digit code for resistance and capacitance values and tolerances", or informally as "R notation" is a notation to speci ...
and
BS 1852 The RKM code, also referred to as "letter and numeral code for electrical resistance, resistance and capacitance values and Electrical component tolerance, tolerances", "letter and digit code for resistance and capacitance values and tolerances", ...
is a notation to state a capacitor's value in a circuit diagram. It avoids using a
decimal separator FIle:Decimal separators.svg, alt=Four types of separating decimals: a) 1,234.56. b) 1.234,56. c) 1'234,56. d) ١٬٢٣٤٫٥٦., Both a comma and a full stop (or period) are generally accepted decimal separators for international use. The apost ...
and replaces the decimal separator with the SI prefix symbol for the particular value (and the letter for weight 1). The code is also used for part markings. Example: for 4.7 nF or for 2.2 F.


Historical

In texts prior to the 1960s and on some capacitor packages until more recently, obsolete capacitance units were utilized in electronic books, magazines, and electronics catalogs. The old units "mfd" and "mf" meant ''microfarad'' (μF); and the old units "mmfd", "mmf", "uuf", "μμf", "pfd" meant ''picofarad'' (pF); but they are rarely used any more. Also, "Micromicrofarad" or "micro-microfarad" are obsolete units that are found in some older texts that is equivalent to ''picofarad'' (pF). Summary of obsolete capacitance units: (upper/lower case variations are not shown) * μF (microfarad) = mf, mfd * pF (picofarad) = mmf, mmfd, pfd, μμF


Applications


Energy storage

A capacitor can store electric energy when disconnected from its charging circuit, so it can be used like a temporary battery, or like other types of rechargeable energy storage system. Capacitors are commonly used in electronic devices to maintain power supply while batteries are being changed. (This prevents loss of information in volatile memory.) A capacitor can facilitate conversion of kinetic energy of charged particles into electric energy and store it. There are tradeoffs between capacitors and batteries as storage devices. Without external resistors or inductors, capacitors can generally release their stored energy in a very short time compared to batteries. Conversely, batteries can hold a far greater charge per their size. Conventional capacitors provide less than 360
joule The joule ( , or ; symbol: J) is the unit of energy in the International System of Units (SI). In terms of SI base units, one joule corresponds to one kilogram- metre squared per second squared One joule is equal to the amount of work d ...
s per kilogram of
specific energy Specific energy or massic energy is energy per unit mass. It is also sometimes called gravimetric energy density, which is not to be confused with energy density, which is defined as energy per unit volume. It is used to quantify, for example, st ...
, whereas a conventional
alkaline battery An alkaline battery (IEC code: L) is a type of primary battery where the electrolyte (most commonly potassium hydroxide) has a pH value above 7. Typically, these batteries derive energy from the reaction between zinc metal and manganese diox ...
has a density of 590 kJ/kg. There is an intermediate solution:
supercapacitor alt=Supercapacitor, upright=1.5, Schematic illustration of a supercapacitor upright=1.5, A diagram that shows a hierarchical classification of supercapacitors and capacitors of related types A supercapacitor (SC), also called an ultracapacitor, ...
s, which can accept and deliver charge much faster than batteries, and tolerate many more charge and discharge cycles than rechargeable batteries. They are, however, 10 times larger than conventional batteries for a given charge. On the other hand, it has been shown that the amount of charge stored in the dielectric layer of the thin film capacitor can be equal to, or can even exceed, the amount of charge stored on its plates. In
car audio Vehicle audio is equipment installed in a car or other vehicle to provide in-car entertainment and information for the occupants. Such systems are popularly known as car stereos. Until the 1950s, it consisted of a simple AM radio. Additions si ...
systems, large capacitors store energy for the
amplifier An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power su ...
to use on demand. Also, for a
flash tube A flashtube (flashlamp) produces an electrostatic discharge with an extremely intense, Coherence (physics), incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with ...
, a capacitor is used to hold the
high voltage High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant sp ...
.


Digital memory

In the 1930s, John Atanasoff applied the principle of energy storage in capacitors to construct dynamic digital memories for the first binary computers that used electron tubes for logic.


Pulsed power and weapons

Pulsed power Pulsed power is the science and technology of accumulating energy over a relatively long period of time and releasing it instantly, thus increasing the instantaneous power. They can be used in some applications such as food processing, water treatme ...
is used in many applications to increase the power intensity (watts) of a volume of energy (joules) by releasing that volume within a very short time. Pulses in the nanosecond range and powers in the gigawatts are achievable. Short pulses often require specially constructed, low-inductance, high-voltage capacitors that are often used in large groups (''capacitor banks'') to supply huge pulses of current for many pulsed power applications. These include
electromagnetic forming Electromagnetic forming (EM forming or magneforming) is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields tha ...
,
Marx generator A Marx generator is an electrical circuit first described by Erwin Otto Marx in 1924. Its purpose is to generate a high-voltage pulse from a low-voltage DC supply. Marx generators are used in high-energy physics experiments, as well as to simul ...
s, pulsed
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
s (especially
TEA laser A TEA laser, or transversely excited atmospheric laser, is a gas laser energized by a high-voltage electrical discharge in a gas mixture generally at or above atmospheric pressure. The most common types are carbon dioxide lasers and excimer las ...
s), pulse forming networks,
radar Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
, fusion research, and
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
s. Large capacitor banks (reservoir) are used as energy sources for the exploding-bridgewire detonators or
slapper detonator A slapper detonator, also called exploding foil initiator (EFI), is a detonator developed by Lawrence Livermore National Laboratory, US Patent No. 4,788,913 (Filed 1971, Granted 1988). It is an improvement over the earlier exploding-bridgewire de ...
s in
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s and other specialty weapons. Experimental work is under way using banks of capacitors as power sources for electromagnetic armour and electromagnetic
railgun A railgun or rail gun, sometimes referred to as a rail cannon, is a linear motor device, typically designed as a ranged weapon, that uses Electromagnet, electromagnetic force to launch high-velocity Projectile, projectiles. The projectile norma ...
s and
coilgun A coilgun is a type of mass driver consisting of one or more coils used as electromagnets in the configuration of a linear motor that accelerate a ferromagnetic or conducting projectile to high velocity. In almost all coilgun configurations, t ...
s.


Power conditioning

Reservoir capacitor A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The process is known as ''rectification'', since it "straightens" t ...
s are used in
power supplies A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a r ...
where they smooth the output of a full or half wave
rectifier A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The process is known as ''rectification'', since it "straightens" t ...
. They can also be used in
charge pump A charge pump is a kind of DC-to-DC converter that uses capacitors for energetic charge storage to raise or lower voltage. Charge-pump circuits are capable of high efficiencies, sometimes as high as 90–95%, while being electrically simple ...
circuits as the energy storage element in the generation of higher voltages than the input voltage. Capacitors are connected in parallel with the power circuits of most electronic devices and larger systems (such as factories) to shunt away and conceal current fluctuations from the primary power source to provide a "clean" power supply for signal or control circuits. Audio equipment, for example, uses several capacitors in this way, to shunt away power line hum before it gets into the signal circuitry. The capacitors act as a local reserve for the DC power source, and bypass AC currents from the power supply. This is used in car audio applications, when a stiffening capacitor compensates for the inductance and resistance of the leads to the lead–acid
car battery An automotive battery, or car battery, is a usually 12 Volt lead-acid rechargeable battery that is used to start a motor vehicle, and to power lights, screen wiper etc. while the engine is off. Its main purpose is to provide an electric current ...
.


Power-factor correction

In electric power distribution, capacitors are used for
power-factor correction In electrical engineering, the power factor of an AC power system is defined as the ratio of the ''real power'' absorbed by the load to the ''apparent power'' flowing in the circuit. Real power is the average of the instantaneous product of vol ...
. Such capacitors often come as three capacitors connected as a
three phase Three-phase electric power (abbreviated 3ϕ) is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires (or four including an optional n ...
load. Usually, the values of these capacitors are not given in farads but rather as a
reactive power In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the ...
in volt-amperes reactive (var). The purpose is to counteract inductive loading from devices like
electric motors An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate Laplace force i ...
and
transmission line In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmis ...
s to make the load appear to be mostly resistive. Individual motor or lamp loads may have capacitors for power-factor correction, or larger sets of capacitors (usually with automatic switching devices) may be installed at a load center within a building or in a large utility substation.


Suppression and coupling


Signal coupling

Because capacitors pass AC but block DC
signals A signal is both the process and the result of Signal transmission, transmission of data over some transmission media, media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processin ...
(when charged up to the applied DC voltage), they are often used to separate the AC and DC components of a signal. This method is known as ''AC coupling'' or "capacitive coupling". Here, a large value of capacitance, whose value need not be accurately controlled, but whose reactance is small at the signal frequency, is employed.


Decoupling

A
decoupling capacitor In electronics, a decoupling capacitor is a capacitor used to decouple (i.e. prevent electrical energy from transferring to) one part of a circuit from another. Noise caused by other circuit elements is shunted through the capacitor, reduc ...
is a capacitor used to protect one part of a circuit from the effect of another, for instance to suppress noise or transients. Noise caused by other circuit elements is shunted through the capacitor, reducing the effect they have on the rest of the circuit. It is most commonly used between the power supply and ground. An alternative name is ''
bypass capacitor In electronics, a decoupling capacitor is a capacitor used to decouple (i.e. prevent electrical energy from transferring to) one part of a circuit from another. Noise caused by other circuit elements is shunted through the capacitor, reduc ...
'' as it is used to bypass the power supply or other high impedance component of a circuit. Decoupling capacitors need not always be discrete components. Capacitors used in these applications may be built into a
printed circuit board A printed circuit board (PCB), also called printed wiring board (PWB), is a Lamination, laminated sandwich structure of electrical conduction, conductive and Insulator (electricity), insulating layers, each with a pattern of traces, planes ...
, between the various layers. These are often referred to as embedded capacitors. The layers in the board contributing to the capacitive properties also function as power and ground planes, and have a dielectric in between them, enabling them to operate as a parallel plate capacitor.


High-pass and low-pass filters


Noise suppression, spikes, and snubbers

When an inductive circuit is opened, the current through the inductance collapses quickly, creating a large voltage across the open circuit of the switch or relay. If the inductance is large enough, the energy may generate a spark, causing the contact points to oxidize, deteriorate, or sometimes weld together, or destroying a solid-state switch. A
snubber A snubber is a device used to suppress ("wiktionary:snub, snub") a phenomenon such as voltage transients in electronics, electrical systems, pressure transients in fluid systems (caused by for example water hammer) or excess force or rapid moveme ...
capacitor across the newly opened circuit creates a path for this impulse to bypass the contact points, thereby preserving their life; these were commonly found in
contact breaker A contact breaker (or "points") is a type of electrical switch, found in the ignition systems of spark-ignition internal combustion engines. The switch is automatically operated by a cam driven by the engine. The timing of operation of the switch ...
ignition system Ignition systems are used by heat engines to initiate combustion by igniting the fuel-air mixture. In a spark ignition versions of the internal combustion engine (such as petrol engines), the ignition system creates a spark to ignite the fuel-ai ...
s, for instance. Similarly, in smaller scale circuits, the spark may not be enough to damage the switch but may still radiate undesirable radio frequency interference (RFI), which a filter capacitor absorbs. Snubber capacitors are usually employed with a low-value resistor in series, to dissipate energy and minimize RFI. Such resistor-capacitor combinations are available in a single package. Capacitors are also used in parallel with interrupting units of a high-voltage
circuit breaker A circuit breaker is an electrical safety device designed to protect an Electrical network, electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interr ...
to equally distribute the voltage between these units. These are called "grading capacitors". In schematic diagrams, a capacitor used primarily for DC charge storage is often drawn vertically in circuit diagrams with the lower, more negative, plate drawn as an arc. The straight plate indicates the positive terminal of the device, if it is polarized (see
electrolytic capacitor An electrolyte is a substance that conducts electricity through the movement of ions, but not through the movement of electrons. This includes most soluble Salt (chemistry), salts, acids, and Base (chemistry), bases, dissolved in a polar solven ...
).


Motor starters

In single phase
squirrel cage Squirrel-cage may refer to: *a squirrel-cage rotor *a squirrel-cage fan, another name for a centrifugal fan *a hamster wheel A hamster wheel or running wheel is an exercise device used primarily by hamsters and other rodents, but also by othe ...
motors, the primary winding within the motor housing is not capable of starting a rotational motion on the rotor, but is capable of sustaining one. To start the motor, a secondary "start" winding has a series non-polarized ''
starting capacitor A motor capacitor is an electrical capacitor that alters the current to one or more windings of a single-phase AC motor, alternating-current induction motor to create a rotating magnetic field. There are two common types of motor capacitors, sta ...
'' to introduce a lead in the sinusoidal current. When the secondary (start) winding is placed at an angle with respect to the primary (run) winding, a rotating electric field is created. The force of the rotational field is not constant, but is sufficient to start the rotor spinning. When the rotor comes close to operating speed, a centrifugal switch (or current-sensitive relay in series with the main winding) disconnects the capacitor. The start capacitor is typically mounted to the side of the motor housing. These are called capacitor-start motors, that have relatively high starting torque. Typically they can have up-to four times as much starting torque as a split-phase motor and are used on applications such as compressors, pressure washers and any small device requiring high starting torques. Capacitor-run induction motors have a permanently connected phase-shifting capacitor in series with a second winding. The motor is much like a two-phase induction motor. Motor-starting capacitors are typically non-polarized electrolytic types, while running capacitors are conventional paper or plastic film dielectric types.


Signal processing

The energy stored in a capacitor can be used to represent
information Information is an Abstraction, abstract concept that refers to something which has the power Communication, to inform. At the most fundamental level, it pertains to the Interpretation (philosophy), interpretation (perhaps Interpretation (log ...
, either in binary form, as in
DRAM Dram, DRAM, or drams may refer to: Technology and engineering * Dram (unit), a unit of mass and volume, and an informal name for a small amount of liquor, especially whisky or whiskey * Dynamic random-access memory, a type of electronic semicondu ...
s, or in analogue form, as in analog sampled filters and CCDs. Capacitors can be used in
analog circuit Analogue electronics () are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term ''analogue'' describes the proportional relationship between a signal ...
s as components of integrators or more complex filters and in negative feedback loop stabilization. Signal processing circuits also use capacitors to integral, integrate a current signal.


Tuned circuits

Capacitors and inductors are applied together in RLC circuit, tuned circuits to select information in particular frequency bands. For example, radio receivers rely on variable capacitors to tune the station frequency. Speakers use passive analog Audio crossover, crossovers, and analog equalizers use capacitors to select different audio bands. The resonant frequency ''f'' of a tuned circuit is a function of the inductance (''L'') and capacitance (''C'') in series, and is given by: f = \frac where is in henry (unit), henries and is in farads.


Sensing

Most capacitors are designed to maintain a fixed physical structure. However, various factors can change the structure of the capacitor, and the resulting change in capacitance can be used to Sensor, sense those factors. ;Changing the dielectric: :The effects of varying the characteristics of the dielectric can be used for sensing purposes. Capacitors with an exposed and porous dielectric can be used to measure humidity in air. Capacitors are used to accurately measure the fuel level in airplanes; as the fuel covers more of a pair of plates, the circuit capacitance increases. Squeezing the dielectric can change a capacitor at a few tens of bar pressure sufficiently that it can be used as a pressure sensor. A selected, but otherwise standard, polymer dielectric capacitor, when immersed in a compatible gas or liquid, can work usefully as a very low cost pressure sensor up to many hundreds of bar. ;Changing the distance between the plates: :Capacitors with a flexible plate can be used to measure strain or pressure. Industrial pressure transmitters used for process control use pressure-sensing diaphragms, which form a capacitor plate of an oscillator circuit. Capacitors are used as the sensor in
condenser microphone A microphone, colloquially called a mic (), or mike, is a transducer that converts sound into an electrical signal. Microphones are used in many applications such as telephones, hearing aids, public address systems for concert halls and publi ...
s, where one plate is moved by air pressure, relative to the fixed position of the other plate. Some accelerometers use MEMS capacitors etched on a chip to measure the magnitude and direction of the acceleration vector. They are used to detect changes in acceleration, in tilt sensors, or to detect free fall, as sensors triggering airbag deployment, and in many other applications. Some Fingerprint authentication#Fingerprint sensors, fingerprint sensors use capacitors. Additionally, a user can adjust the pitch of a theremin musical instrument by moving their hand since this changes the effective capacitance between the user's hand and the antenna. ;Changing the effective area of the plates: :Capacitive touch switches are now used on many consumer electronic products.


Oscillators

A capacitor can possess spring-like qualities in an oscillator circuit. In the image example, a capacitor acts to influence the biasing voltage at the npn transistor's base. The resistance values of the voltage-divider resistors and the capacitance value of the capacitor together control the oscillatory frequency.


Producing light

A light-emitting capacitor is made from a dielectric that uses phosphorescence to produce light. If one of the conductive plates is made with a transparent material, the light is visible. Light-emitting capacitors are used in the construction of electroluminescent panels, for applications such as backlighting for laptop computers. In this case, the entire panel is a capacitor used for the purpose of generating light.


Hazards and safety

The hazards posed by a capacitor are usually determined, foremost, by the amount of energy stored, which is the cause of things like electrical burns or heart fibrillation. Factors such as voltage and chassis material are of secondary consideration, which are more related to how easily a shock can be initiated rather than how much damage can occur. Under certain conditions, including conductivity of the surfaces, preexisting medical conditions, the humidity of the air, or the pathways it takes through the body (i.e.: shocks that travel across the core of the body and, especially, the heart are more dangerous than those limited to the extremities), shocks as low as one joule have been reported to cause death, although in most instances they may not even leave a burn. Shocks over ten joules will generally damage skin, and are usually considered hazardous. Any capacitor that can store 50 joules or more should be considered potentially lethal. Capacitors may retain a charge long after power is removed from a circuit; this charge can cause dangerous or even potentially fatal Electric shock, shocks or damage connected equipment. For example, even a seemingly innocuous device such as the Flash (photography), flash of a disposable camera, has a photoflash capacitor which may contain over 15 joules of energy and be charged to over 300 volts. This is easily capable of delivering a shock. Service procedures for electronic devices usually include instructions to discharge large or high-voltage capacitors, for instance using a Brinkley stick. Larger capacitors, such as those used in
microwave oven A microwave oven, or simply microwave, is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces Dipole#Molecular dipoles, polar molecules in the food to rotate and ...
s, HVAC units and medical
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). Defibrillation delivers a dose of electric current (often called a ''count ...
s may also have built-in discharge resistors to dissipate stored energy to a safe level within a few seconds after power is removed. High-voltage capacitors are stored with the terminals short circuit, shorted, as protection from potentially dangerous voltages due to Permittivity#Lossy medium, dielectric absorption or from transient voltages the capacitor may pick up from static charges or passing weather events. Some old, large oil-filled paper or plastic film capacitors contain polychlorinated biphenyls (PCBs). It is known that waste PCBs can leak into groundwater under landfills. Capacitors containing PCBs were labelled as containing "Askarel" and several other trade names. PCB-filled paper capacitors are found in very old (pre-1975) fluorescent lamp ballasts, and other applications. Capacitors may catastrophic failure, catastrophically fail when subjected to voltages or currents beyond their rating, or in case of polarized capacitors, applied in a reverse polarity. Failures may create arcing that heats and vaporizes the dielectric fluid, causing a build up of pressurized gas that may result in swelling, rupture, or an explosion. Larger capacitors may have vents or similar mechanism to allow the release of such pressures in the event of failure. Capacitors used in Radio frequency, RF or sustained high-current applications can overheat, especially in the center of the capacitor rolls. Capacitors used within high-energy capacitor banks can violently explode when a short in one capacitor causes sudden dumping of energy stored in the rest of the bank into the failing unit. High voltage vacuum capacitors can generate soft X-rays even during normal operation. Proper containment, fusing, and preventive maintenance can help to minimize these hazards. High-voltage capacitors may benefit from a pre-charge to limit in-rush currents at power-up of high voltage direct current (HVDC) circuits. This extends the life of the component and may mitigate high-voltage hazards. File:Defekte Kondensatoren.jpg, Swollen electrolytic capacitors. The vent on the tops allows the release of pressurized gas build-up in the event of failure, preventing it from exploding. File:High-energy capacitor from a defibrillator 42 MFD @ 5000 VDC.jpg, This high-energy capacitor from a
defibrillator Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). Defibrillation delivers a dose of electric current (often called a ''count ...
has a resistor connected between the terminals for safety, to dissipate stored energy. File:Exploded Electrolytic Capacitor.jpg, An exploded electrolytic capacitor, showing fragments of paper and metallic foil


See also

* Capacitance meter * Capacitor plague * Electric displacement field * Electroluminescence * List of capacitor manufacturers


Notes


References


Bibliography

* * Philosophical Transactions of the Royal Society LXXII, Appendix 8, 1782 (Volta coins the word ''condenser'') * * *


Further reading

* ''Tantalum and Niobium-Based Capacitors – Science, Technology, and Applications''; 1st Ed; Yuri Freeman; Springer; 120 pages; 2018; . * ''Capacitors''; 1st Ed; R. P. Deshpande; McGraw-Hill; 342 pages; 2014; . * ''The Capacitor Handbook''; 1st Ed; Cletus Kaiser; Van Nostrand Reinhold; 124 pages; 1993; . * ''Understanding Capacitors and their Uses''; 1st Ed; William Mullin; Sams Publishing; 96 pages; 1964. (archive)
/small> * ''Fixed and Variable Capacitors''; 1st Ed; G. W. A. Dummer and Harold Nordenberg; Maple Press; 288 pages; 1960. (archive)
/small> * ''The Electrolytic Capacitor''; 1st Ed; Alexander Georgiev; Murray Hill Books; 191 pages; 1945. (archive)
/small>


External links


The First Condenser – A Beer Glass
– SparkMuseum

– Howstuffworks

{{Authority control Electrical components Energy storage Capacitors, Science and technology in the Dutch Republic Dutch inventions 18th-century inventions German inventions