
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a curve (also called a curved line in older texts) is an object similar to a
line, but that does not have to be
straight.
Intuitively, a curve may be thought of as the trace left by a moving
point. This is the definition that appeared more than 2000 years ago in
Euclid's ''Elements'': "The
urvedline is
��the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which
��will leave from its imaginary moving some vestige in length, exempt of any width."
This definition of a curve has been formalized in modern mathematics as: ''A curve is the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of an
interval to a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
by a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
''. In some contexts, the function that defines the curve is called a ''parametrization'', and the curve is a
parametric curve
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point (mathematics), point, as Function (mathematics), functions of one or several variable (mathematics), variables called parameters.
In the case ...
. In this article, these curves are sometimes called ''topological curves'' to distinguish them from more constrained curves such as
differentiable curves. This definition encompasses most curves that are studied in mathematics; notable exceptions are
level curves (which are
unions of curves and isolated points), and
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s (see below). Level curves and algebraic curves are sometimes called
implicit curves, since they are generally defined by
implicit equation
In mathematics, an implicit equation is a relation of the form R(x_1, \dots, x_n) = 0, where is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is x^2 + y^2 - 1 = 0.
An implicit func ...
s.
Nevertheless, the class of topological curves is very broad, and contains some curves that do not look as one may expect for a curve, or even cannot be drawn. This is the case of
space-filling curve
In mathematical analysis, a space-filling curve is a curve whose Range of a function, range reaches every point in a higher dimensional region, typically the unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Pea ...
s and
fractal curve
A fractal curve is, loosely, a mathematical curve (mathematics), curve whose shape retains the same general pattern of Pathological (mathematics), irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fract ...
s. For ensuring more regularity, the function that defines a curve is often supposed to be
differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
, and the curve is then said to be a
differentiable curve.
A
plane algebraic curve is the
zero set
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or eq ...
of a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
in two
indeterminates. More generally, an
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
is the zero set of a finite set of polynomials, which satisfies the further condition of being an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, ...
of
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
one. If the coefficients of the polynomials belong to a
field , the curve is said to be ''defined over'' . In the common case of a
real algebraic curve In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomi ...
, where is the field of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, an algebraic curve is a finite union of topological curves. When
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
zeros are considered, one has a ''complex algebraic curve'', which, from the
topological
Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
point of view, is not a curve, but a
surface
A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
, and is often called a
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
. Although not being curves in the common sense, algebraic curves defined over other fields have been widely studied. In particular, algebraic curves over a
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
are widely used in modern
cryptography
Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
.
History

Interest in curves began long before they were the subject of mathematical study. This can be seen in numerous examples of their decorative use in art and on everyday objects dating back to prehistoric
times.
[Lockwood p. ix] Curves, or at least their graphical representations, are simple to create, for example with a stick on the sand on a beach.
Historically, the term was used in place of the more modern term . Hence the terms and were used to distinguish what are today called lines from curved lines. For example, in Book I of
Euclid's Elements
The ''Elements'' ( ) is a mathematics, mathematical treatise written 300 BC by the Ancient Greek mathematics, Ancient Greek mathematician Euclid.
''Elements'' is the oldest extant large-scale deductive treatment of mathematics. Drawing on the w ...
, a line is defined as a "breadthless length" (Def. 2), while a line is defined as "a line that lies evenly with the points on itself" (Def. 4). Euclid's idea of a line is perhaps clarified by the statement "The extremities of a line are points," (Def. 3). Later commentators further classified lines according to various schemes. For example:
*Composite lines (lines forming an angle)
*Incomposite lines
**Determinate (lines that do not extend indefinitely, such as the circle)
**Indeterminate (lines that extend indefinitely, such as the straight line and the parabola)

The Greek
geometers had studied many other kinds of curves. One reason was their interest in solving geometrical problems that could not be solved using standard
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
construction.
These curves include:
*The conic sections, studied in depth by
Apollonius of Perga
Apollonius of Perga ( ; ) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention o ...
*The
cissoid of Diocles, studied by
Diocles and used as a method to
double the cube.
*The
conchoid of Nicomedes, studied by
Nicomedes as a method to both double the cube and to
trisect an angle.
*The
Archimedean spiral
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ...
, studied by
Archimedes
Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
as a method to trisect an angle and
square the circle.
*The
spiric sections, sections of
tori studied by
Perseus
In Greek mythology, Perseus (, ; Greek language, Greek: Περσεύς, Romanization of Greek, translit. Perseús) is the legendary founder of the Perseid dynasty. He was, alongside Cadmus and Bellerophon, the greatest Greek hero and slayer of ...
as sections of cones had been studied by Apollonius.

A fundamental advance in the theory of curves was the introduction of
analytic geometry
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
Analytic geometry is used in physics and engineering, and als ...
by
René Descartes
René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
in the seventeenth century. This enabled a curve to be described using an equation rather than an elaborate geometrical construction. This not only allowed new curves to be defined and studied, but it enabled a formal distinction to be made between
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s that can be defined using
polynomial equation
In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers.
For example, x^5-3x+1=0 is a ...
s, and
transcendental curves that cannot. Previously, curves had been described as "geometrical" or "mechanical" according to how they were, or supposedly could be, generated.
Conic sections were applied in
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
by
Kepler
Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws of p ...
.
Newton also worked on an early example in the
calculus of variations
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions
and functional (mathematics), functionals, to find maxima and minima of f ...
. Solutions to variational problems, such as the
brachistochrone and
tautochrone
A tautochrone curve or isochrone curve () is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve. The curve is a cycloid, and the time ...
questions, introduced properties of curves in new ways (in this case, the
cycloid
In geometry, a cycloid is the curve traced by a point on a circle as it Rolling, rolls along a Line (geometry), straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette (curve), roulette, a curve g ...
). The
catenary
In physics and geometry, a catenary ( , ) is the curve that an idealized hanging chain or wire rope, cable assumes under its own weight when supported only at its ends in a uniform gravitational field.
The catenary curve has a U-like shape, ...
gets its name as the solution to the problem of a hanging chain, the sort of question that became routinely accessible by means of
differential calculus
In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve. ...
.
In the eighteenth century came the beginnings of the theory of plane algebraic curves, in general. Newton had studied the
cubic curve
In mathematics, a cubic plane curve is a plane algebraic curve defined by a cubic equation
:
applied to homogeneous coordinates for the projective plane; or the inhomogeneous version for the affine space determined by setting in such an eq ...
s, in the general description of the real points into 'ovals'. The statement of
Bézout's theorem
In algebraic geometry, Bézout's theorem is a statement concerning the number of common zeros of polynomials in indeterminates. In its original form the theorem states that ''in general'' the number of common zeros equals the product of the de ...
showed a number of aspects which were not directly accessible to the geometry of the time, to do with singular points and complex solutions.
Since the nineteenth century, curve theory is viewed as the special case of dimension one of the theory of
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s and
algebraic varieties
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. Nevertheless, many questions remain specific to curves, such as
space-filling curve
In mathematical analysis, a space-filling curve is a curve whose Range of a function, range reaches every point in a higher dimensional region, typically the unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Pea ...
s,
Jordan curve theorem
In topology, the Jordan curve theorem (JCT), formulated by Camille Jordan in 1887, asserts that every ''Jordan curve'' (a plane simple closed curve) divides the plane into an "interior" region Boundary (topology), bounded by the curve (not to be ...
and
Hilbert's sixteenth problem.
Topological curve
A topological curve can be specified by a
continuous function
In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
from an
interval of the
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s into a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
. Properly speaking, the ''curve'' is the
image
An image or picture is a visual representation. An image can be Two-dimensional space, two-dimensional, such as a drawing, painting, or photograph, or Three-dimensional space, three-dimensional, such as a carving or sculpture. Images may be di ...
of
However, in some contexts,
itself is called a curve, especially when the image does not look like what is generally called a curve and does not characterize sufficiently
For example, the image of the
Peano curve or, more generally, a
space-filling curve
In mathematical analysis, a space-filling curve is a curve whose Range of a function, range reaches every point in a higher dimensional region, typically the unit square (or more generally an ''n''-dimensional unit hypercube). Because Giuseppe Pea ...
completely fills a square, and therefore does not give any information on how
is defined.
A curve
is closed or is a ''
loop'' if