Clebsch Graph
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, the Clebsch graph is either of two
complementary Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
graphs on 16 vertices, a 5-
regular graph In graph theory, a regular graph is a Graph (discrete mathematics), graph where each Vertex (graph theory), vertex has the same number of neighbors; i.e. every vertex has the same Degree (graph theory), degree or valency. A regular directed graph ...
with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5
halved cube graph In graph theory, the halved cube graph or half cube graph of dimension is the graph of the demihypercube, formed by connecting pairs of vertices at distance exactly two from each other in the hypercube graph. That is, it is the half-square of ...
; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician
Alfred Clebsch Rudolf Friedrich Alfred Clebsch (19 January 1833 – 7 November 1872) was a German mathematician who made important contributions to algebraic geometry and invariant theory. He attended the University of Königsberg and was habilitated at Humboldt ...
. The 40-edge variant is the dimension-5
folded cube graph In graph theory, a folded cube graph is an undirected graph formed from a hypercube graph by adding to it a perfect matching that connects ''opposite'' pairs of hypercube vertices. Construction The folded cube graph of dimension ''k'' (containin ...
; it is also known as the Greenwood–Gleason graph after the work of , who used it to evaluate the
Ramsey number In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (sa ...
''R''(3,3,3) = 17..


Construction

The dimension-5
folded cube graph In graph theory, a folded cube graph is an undirected graph formed from a hypercube graph by adding to it a perfect matching that connects ''opposite'' pairs of hypercube vertices. Construction The folded cube graph of dimension ''k'' (containin ...
(the 5-regular Clebsch graph) may be constructed by adding edges between opposite pairs of vertices in a 4-dimensional hypercube graph. (In an ''n''-dimensional hypercube, a pair of vertices are ''opposite'' if the shortest path between them has ''n'' edges.) Alternatively, it can be formed from a 5-dimensional hypercube graph by identifying together (or contracting) every opposite pair of vertices. Another construction, leading to the same graph, is to create a vertex for each element of the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
GF(16), and connect two vertices by an edge whenever the difference between the corresponding two field elements is a
perfect cube In arithmetic and algebra, the cube of a number is its third power, that is, the result of multiplying three instances of together. The cube of a number is denoted , using a superscript 3, for example . The cube operation can also be defin ...
. The dimension-5
halved cube graph In graph theory, the halved cube graph or half cube graph of dimension is the graph of the demihypercube, formed by connecting pairs of vertices at distance exactly two from each other in the hypercube graph. That is, it is the half-square of ...
(the 10-regular Clebsch graph) is the
complement Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
of the 5-regular graph. It may also be constructed from the vertices of a 5-dimensional hypercube, by connecting pairs of vertices whose
Hamming distance In information theory, the Hamming distance between two String (computer science), strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number ...
is exactly two. This construction is an instance of the construction of
Frankl–Rödl graph In graph theory and computational complexity theory, a Frankl–Rödl graph is a graph defined by connecting pairs of vertices of a hypercube that are at a specified even distance from each other. The graphs of this type are parameterized by the d ...
s. It produces two subsets of 16 vertices that are disconnected from each other; both of these
half-square In graph theory, the bipartite half or half-square of a bipartite graph is a graph whose vertex set is one of the two sides of the bipartition (without loss of generality, ) and in which there is an edge for each pair of vertices in that ar ...
s of the hypercube are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the 10-regular Clebsch graph. Two copies of the 5-regular Clebsch graph can be produced in the same way from a 5-dimensional hypercube, by connecting pairs of vertices whose Hamming distance is exactly four.


Properties

The 5-regular Clebsch graph is a
strongly regular graph In graph theory, a strongly regular graph (SRG) is a regular graph with vertices and degree such that for some given integers \lambda, \mu \ge 0 * every two adjacent vertices have common neighbours, and * every two non-adjacent vertices h ...
of degree 5 with parameters (v,k,\lambda,\mu) = (16, 5, 0, 2). Its complement, the 10-regular Clebsch graph, is therefore also a strongly regular graph, with parameters (16, 10, 6, 6). The 5-regular Clebsch graph is
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
, non planar and non Eulerian. It is also both 5- vertex-connected and 5- edge-connected. The subgraph that is induced by the ten non-neighbors of any vertex in this graph forms an
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
copy of the
Petersen graph In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph i ...
. It has
book thickness In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a ''book'', a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on ...
4 and
queue number In the mathematical field of graph theory, the queue number of a Graph (discrete mathematics), graph is a graph invariant defined analogously to book thickness, stack number (book thickness) using Queue (abstract data type), first-in first-out (q ...
3. The edges of the
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices i ...
''K''16 may be partitioned into three disjoint copies of the 5-regular Clebsch graph. Because the Clebsch graph is a
triangle-free graph In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with ...
, this shows that there is a triangle-free three-coloring of the edges of ''K''16; that is, that the
Ramsey number In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (sa ...
''R''(3,3,3) describing the minimum number of vertices in a complete graph without a triangle-free three-coloring is at least 17. used this construction as part of their proof that ''R''(3,3,3) = 17. The 5-regular Clebsch graph may be
colored ''Colored'' (or ''coloured'') is a racial descriptor historically used in the United States during the Jim Crow era to refer to an African American. In many places, it may be considered a slur. Dictionary definitions The word ''colored'' wa ...
with four colors, but not three: its largest independent set has five vertices, not enough to partition the graph into three independent color classes. It contains as an
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
the
Grötzsch graph In the mathematical field of graph theory, the Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, chromatic number 4, and crossing number 5. It is named after German mathematician Herbert Grötzsch, who used it as an example ...
, the smallest
triangle-free In the mathematics, mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle graph, triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique (graph t ...
four-chromatic graph, and every four-chromatic induced subgraph of the Clebsch graph is a supergraph of the Grötzsch graph. More strongly, every triangle-free four-chromatic graph with no
induced path In the mathematical area of graph theory, an induced path in an undirected graph is a path that is an induced subgraph of . That is, it is a sequence of vertices in such that each two adjacent vertices in the sequence are connected by an edge ...
of length six or more is an induced subgraph of the Clebsch graph and an induced supergraph of the Grötzsch graph.. The 5-regular Clebsch graph is the Keller graph of dimension two, part of a family of graphs used to find tilings of high-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
s by
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square ( ) and a cube ( ); the special case for is known as a ''tesseract''. It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel l ...
s no two of which meet face-to-face. The 5-regular Clebsch graph can be embedded as a regular map in the orientable manifold of genus 5, forming pentagonal faces; and in the non-orientable surface of genus 6, forming tetragonal faces.


Algebraic properties

The
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
of the 5-regular Clebsch graph is (x+3)^5(x-1)^(x-5). Because this polynomial can be completely factored into linear terms with integer coefficients, the Clebsch graph is an
integral graph In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjac ...
: its
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
consists entirely of integers. The Clebsch graph is the only graph with this characteristic polynomial, making it a graph determined by its spectrum. The 5-regular Clebsch graph is a
Cayley graph In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a Graph (discrete mathematics), graph that encodes the abstract structure of a group (mathematics), group. Its definition is sug ...
with an automorphism group of order 1920, isomorphic to the
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
D_5. As a Cayley graph, its automorphism group acts transitively on its vertices, making it
vertex transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
. In fact, it is arc transitive, hence edge transitive and distance transitive. It is also connected-homogeneous, meaning that every isomorphism between two connected induced subgraphs can be extended to an automorphism of the whole graph.


Gallery

File:Clebsch graph hamiltonian.svg, The Clebsch graph is
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
. File:Complete coloring clebsch graph.svg, The
achromatic number In graph theory, a complete coloring is a (proper) vertex coloring In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such ...
of the Clebsch graph is 8. File:Clebsch graph 4COL.svg, The
chromatic number In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring i ...
of the Clebsch graph is 4. File:Clebsch_graph_5color_edge.svg, The
chromatic index In graph theory, a proper edge coloring of a Graph (discrete mathematics), graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge colorin ...
of the Clebsch graph is 5. File:Clebsch hypercube.svg, Construction of the Clebsch graph from a
hypercube graph In graph theory, the hypercube graph is the graph formed from the vertices and edges of an -dimensional hypercube. For instance, the cubical graph, cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has ...
.


References

{{reflist Individual graphs Regular graphs Strongly regular graphs