Spectral Graph Theory
In mathematics, spectral graph theory is the study of the properties of a Graph (discrete mathematics), graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. The adjacency matrix of a simple undirected graph is a Real number, real symmetric matrix and is therefore Orthogonal diagonalization, orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its Spectrum of a matrix, spectrum is a graph invariant, although not a complete one. Spectral graph theory is also concerned with graph parameters that are defined via multiplicities of eigenvalues of matrices associated to the graph, such as the Colin de Verdière graph invariant, Colin de Verdière number. Cospectral graphs Two graphs are called cospectral or isospectral if the adjacency matrices of the graphs are isospectral, that is, if t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isospectral Enneahedra
In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity. The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square matrices. In infinite dimensions, the spectrum need not consist solely of isolated eigenvalues. However, the case of a compact operator on a Hilbert space (or Banach space) is still tractable, since the eigenvalues are at most countable with at most a single limit point ''λ'' = 0. The most studied isospectral problem in infinite dimensions is that of the Laplace operator on a domain in R2. Two such domains are called isospectral if their Laplacians are isospectral. The problem of inferring the geometrical properties of a domain from the spectrum of its Laplacian is ofte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Incidence Geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incidence structure'' is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure. Such fundamental results remain valid when additional concepts are added to form a richer geometry. It sometimes happens that authors blur the distinction between a study and the objects of that study, so it is not surprising to find that some authors refer to incidence structures as incidence geometries. Incidence structures arise naturally and have been studied in various areas of mathematics. Consequently, there are different terminologies to describe these objects. In graph theory th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distance-regular Graph
In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices and , the number of vertices at distance from and at distance from depends only upon , , and the distance between and . Some authors exclude the complete graphs and disconnected graphs from this definition. Every distance-transitive graph is distance regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group. Intersection arrays The intersection array of a distance-regular graph is the array ( b_0, b_1, \ldots, b_; c_1, \ldots, c_d ) in which d is the diameter of the graph and for each 1 \leq j \leq d , b_j gives the number of neighbours of u at distance j+1 from v and c_j gives the number of neighbours of u at distance j - 1 from v for any pair of vertices u and v at dis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Graph
In graph theory, a regular graph is a Graph (discrete mathematics), graph where each Vertex (graph theory), vertex has the same number of neighbors; i.e. every vertex has the same Degree (graph theory), degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree is called a graph or regular graph of degree . Special cases Regular graphs of degree at most 2 are easy to classify: a graph consists of disconnected vertices, a graph consists of disconnected edges, and a graph consists of a disjoint union of graphs, disjoint union of cycle (graph theory), cycles and infinite chains. A graph is known as a cubic graph. A strongly regular graph is a regular graph where every adjacent pair of vertices has the same number of neighbors in common, and every non-adjacent pair of vertices has the same number of neighbors in common. The smal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tree (graph Theory)
In graph theory, a tree is an undirected graph in which any two vertices are connected by path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. A directed tree, oriented tree,See .See . polytree,See . or singly connected networkSee . is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees. A rooted tree may be directed, called a directed rooted tree, either making all its edges point away from the root—in which case it is called an arborescence or out-tree� ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost All
In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite set, finite, countable set, countable, or null set, null. In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of X" means "a negligible quantity of elements of X". Meanings in different areas of mathematics Prevalent meaning Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finite set, finitely many". This use occurs in philosophy as well. Similarly, "almost all" can mean "all (elements of an uncountable set) except for countable set, countably many". Examples: * Almost all positive integers are greater than 1012. * Almost all prime numbers are odd (2 is the only ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Enneahedron
In geometry, an enneahedron (or nonahedron) is a polyhedron with nine Face (geometry), faces. There are 2606 types of convex polyhedron, convex enneahedron, each having a different pattern of vertex, edge, and face connections. None of them are regular polyhedron, regular. Examples The most familiar enneahedra are the octagonal Pyramid (geometry), pyramid and the heptagonal prism. The heptagonal prism is a Prismatic uniform polyhedron, uniform polyhedron, with two regular heptagon faces and seven square faces. The octagonal pyramid has eight isosceles triangular faces around a regular octagonal base. Two more enneahedra are also found among the Johnson solids: the elongated square pyramid and the elongated triangular bipyramid. The three-dimensional associahedron, with six pentagonal faces and three quadrilateral faces, is an enneahedron. Five Johnson solids have enneahedral duals: the triangular cupola, gyroelongated square pyramid, self-dual elongated square pyramid, triaugmented ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polyhedral Graph
In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the Vertex (geometry), vertices and Edge (geometry), edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the k-vertex-connected graph, 3-vertex-connected, planar graphs. Characterization The Schlegel diagram of a convex polyhedron represents its vertices and edges as points and line segments in the Euclidean plane, forming a subdivision of an outer convex polygon into smaller convex polygons (a convex drawing of the graph of the polyhedron). It has no crossings, so every polyhedral graph is also a planar graph. Additionally, by Balinski's theorem, it is a k-vertex-connected graph, 3-vertex-connected graph. According to Steinitz's theorem, these two graph-theoretic properties are enough to completely Characterization (mathematics), characterize the polyhedral graphs: they are exactly the 3-vertex-connected planar graphs. That ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a '' directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. * ''n'' is called the length of the circuit resp. length of the cycle. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed grap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graph Union
In the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations Unary operations create a new graph from a single initial graph. Elementary operations Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc. The graph edit distance between a pair of graphs is the minimum number of elementary operations required to transform one graph into the other. Advanced operations Advanced operations create a new graph from an initial one by a complex change, such as: * transpose graph; * complement graph; * line graph; * graph minor; * graph rewriting; * power of graph; * dual graph; * medial graph; * quotient graph; * Y-Δ transform; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Star (graph Theory)
In graph theory, a star is the complete bipartite graph a tree (graph theory), tree with one internal node and leaves (but no internal nodes and leaves when ). Alternatively, some authors define to be the tree of order (graph theory), order with maximum diameter (graph theory), diameter 2; in which case a star of has leaves. A star with 3 edges is called a claw. The star is Edge-graceful labeling, edge-graceful when is even and not when is odd. It is an edge-transitive matchstick graph, and has diameter 2 (when ), Girth (graph theory), girth ∞ (it has no cycles), chromatic index , and chromatic number 2 (when ). Additionally, the star has large automorphism group, namely, the symmetric group on letters. Stars may also be described as the only connected graphs in which at most one vertex has degree (graph theory), degree greater than one. Relation to other graph families Claws are notable in the definition of claw-free graphs, graphs that do not have any claw as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |