HOME

TheInfoList



OR:

This
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963. It complements the article on
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
in the area of
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
. An English version and review of this classification was published by Popovych et al. in 2003.


Mubarakzyanov's Classification

Let _n be n-dimensional
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
over the field of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s with generators e_1, \dots, e_n , n \leq 4. For each algebra we adduce only non-zero commutators between basis elements.


One-dimensional

* _1, abelian.


Two-dimensional

* 2_1, abelian \mathbb^2; * _, solvable \mathfrak(1)=\left\, :: _1, e_2= e_1.


Three-dimensional

* 3_1, abelian, Bianchi I; * _\oplus _1 , decomposable solvable, Bianchi III; * _, Heisenberg–Weyl algebra, nilpotent, Bianchi II, :: _2, e_3= e_1; * _, solvable, Bianchi IV, :: _1, e_3= e_1, \quad _2, e_3= e_1 + e_2; * _, solvable, Bianchi V, :: _1, e_3= e_1, \quad _2, e_3= e_2; * _, solvable, Bianchi VI, Poincaré algebra \mathfrak(1,1) when \alpha = -1, :: _1, e_3= e_1, \quad _2, e_3= \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0; * _, solvable, Bianchi VII, :: _1, e_3= \beta e_1 - e_2, \quad _2, e_3= e_1 + \beta e_2, \quad \beta \geq 0; * _, simple, Bianchi VIII, \mathfrak(2, \mathbb R ), :: _1, e_2= e_1, \quad _2, e_3= e_3, \quad _1, e_3= 2 e_2; * _, simple, Bianchi IX, \mathfrak(3), :: _2, e_3= e_1, \quad _3, e_1= e_2, \quad _1, e_2= e_3. Algebra _ can be considered as an extreme case of _, when \beta \rightarrow \infty , forming contraction of Lie algebra. Over the field algebras _, _ are isomorphic to _ and _, respectively.


Four-dimensional

* 4_1, abelian; * _ \oplus 2_1, decomposable solvable, :: _1, e_2= e_1; * 2_, decomposable solvable, :: _1, e_2= e_1 \quad _3, e_4= e_3; * _ \oplus _1, decomposable nilpotent, :: _2, e_3= e_1; * _ \oplus _1, decomposable solvable, :: _1, e_3= e_1, \quad _2, e_3= e_1 + e_2; * _ \oplus _1, decomposable solvable, :: _1, e_3= e_1, \quad _2, e_3= e_2; * _ \oplus _1, decomposable solvable, :: _1, e_3= e_1, \quad _2, e_3= \alpha e_2, \quad -1 \leq \alpha < 1, \quad \alpha \neq 0; * _ \oplus _1, decomposable solvable, :: _1, e_3= \beta e_1 - e_2 \quad _2, e_3= e_1 + \beta e_2, \quad \beta \geq 0; * _ \oplus _1, unsolvable, :: _1, e_2= e_1, \quad _2, e_3= e_3, \quad _1, e_3= 2 e_2; * _ \oplus _1, unsolvable, :: _1, e_2= e_3, \quad _2, e_3= e_1, \quad _3, e_1= e_2; * _ , indecomposable nilpotent, :: _2, e_4= e_1, \quad _3, e_4= e_2; * _ , indecomposable solvable, :: _1, e_4= \beta e_1, \quad _2, e_4= e_2, \quad _3, e_4= e_2 + e_3, \quad \beta \neq 0; * _ , indecomposable solvable, :: _1, e_4= e_1, \quad _3, e_4= e_2; * _ , indecomposable solvable, :: _1, e_4= e_1, \quad _2, e_4= e_1 + e_2, \quad _3, e_4= e_2+e_3; * _ , indecomposable solvable, :: _1, e_4= \alpha e_1, \quad _2, e_4= \beta e_2, \quad _3, e_4= \gamma e_3, \quad \alpha \beta \gamma \neq 0; * _ , indecomposable solvable, :: _1, e_4= \alpha e_1, \quad _2, e_4= \beta e_2 - e_3, \quad _3, e_4= e_2 + \beta e_3, \quad \alpha > 0; * _ , indecomposable solvable, :: _2, e_3= e_1, \quad _1, e_4= 2 e_1, \quad _2, e_4= e_2, \quad _3, e_4= e_2 + e_3; * _ , indecomposable solvable, :: _2, e_3= e_1, \quad _1, e_4= (1 + \beta)e_1, \quad _2, e_4= e_2, \quad _3, e_4= \beta e_3, \quad -1 \leq \beta \leq 1; * _ , indecomposable solvable, :: _2, e_3= e_1, \quad _1, e_4= 2 \alpha e_1, \quad _2, e_4= \alpha e_2 - e_3, \quad _3, e_4= e_2 + \alpha e_3, \quad \alpha \geq 0; * _ , indecomposable solvable, :: _1, e_3= e_1, \quad _2, e_3= e_2, \quad _1, e_4= -e_2, \quad _2, e_4= e_1. Algebra _ can be considered as an extreme case of _, when \beta \rightarrow 0 , forming contraction of Lie algebra. Over the field algebras _ \oplus _1, _ \oplus _1, _, _, _ are isomorphic to _ \oplus _1, _ \oplus _1, _, _, _, respectively.


See also

* Table of Lie groups * Simple Lie group#Full classification


Notes


References

* * {{cite journal , last1=Popovych , first1=R.O. , last2=Boyko , first2=V.M. , last3=Nesterenko , first3=M.O. , last4=Lutfullin , first4=M.W. , display-authors=etal , title=Realizations of real low-dimensional Lie algebras , journal=J. Phys. A: Math. Gen. , volume=36 , issue=26 , year=2003 , pages=7337–7360 , doi=10.1088/0305-4470/36/26/309 , arxiv=math-ph/0301029 , bibcode=2003JPhA...36.7337P , s2cid=9800361 , ref={{harvid, Popovych, 2003 Lie algebras Mathematics-related lists Mathematical classification systems