In
theoretical physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experi ...
, a chiral anomaly is the
anomalous nonconservation of a
chiral
Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object.
An object or a system is ''chiral'' if it is distinguishable from i ...
current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed
bolts, but when opened was found to have more left than right, or vice versa.
Such events are expected to be prohibited according to classical
conservation law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, ...
s, but it is known there must be ways they can be broken, because we have evidence of
charge–parity non-conservation ("CP violation"). It is possible that other imbalances have been caused by breaking of a ''chiral law'' of this kind. Many physicists suspect that the fact that the observable universe contains
more matter than antimatter is caused by a chiral anomaly. Research into
chiral symmetry breaking
In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was award ...
laws is a major endeavor in particle physics research at this time.
Informal introduction
The chiral anomaly originally referred to the anomalous
decay rate
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
of the
neutral pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more g ...
, as computed in the
current algebra of the
chiral model
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning ...
. These calculations suggested that the decay of the pion was suppressed, clearly contradicting experimental results. The nature of the anomalous calculations was first explained by
Adler
Adler may refer to:
Places
*Adler, Alabama, an unincorporated community in Perry County
*Adler Planetarium, Chicago, Illinois, USA
*Adler Township, Nelson County, North Dakota, USA
*Adler University, formerly Adler School of Professional Psycholo ...
[
] and
Bell
A bell is a directly struck idiophone percussion instrument. Most bells have the shape of a hollow cup that when struck vibrates in a single strong strike tone, with its sides forming an efficient resonator. The strike may be made by an inte ...
&
Jackiw.
[
] This is now termed the Adler–Bell–Jackiw anomaly of
quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
. This is a symmetry of classical
electrodynamics
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
that is violated by quantum corrections.
The Adler–Bell–Jackiw anomaly arises in the following way. If one considers the classical (non-quantized) theory of
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
coupled to
fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s (electrically charged
Dirac spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain comb ...
s solving the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin- massive particles, called "Dirac pa ...
), one expects to have not just one but two
conserved current
In physics a conserved current is a current, j^\mu, that satisfies the continuity equation \partial_\mu j^\mu=0. The continuity equation represents a conservation law, hence the name.
Indeed, integrating the continuity equation over a volume V, la ...
s: the ordinary electrical current (the
vector current), described by the Dirac field
as well as an
axial current When moving from the classical theory to the quantum theory, one may compute the quantum corrections to these currents; to first order, these are the
one-loop Feynman diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introdu ...
s. These are famously divergent, and require a
regularization to be applied, to obtain the
renormalized amplitudes. In order for the renormalization to be meaningful, coherent and consistent, the regularized diagrams must obey the same symmetries as the zero-loop (classical) amplitudes. This is the case for the vector current, but not the axial current: it cannot be regularized in such a way as to preserve the axial symmetry. The axial symmetry of classical electrodynamics is broken by quantum corrections. Formally, the
Ward–Takahashi identities of the quantum theory follow from the
gauge symmetry
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups ...
of the electromagnetic field; the corresponding identities for the axial current are broken.
At the time that the Adler–Bell–Jackiw anomaly was being explored in physics, there were related developments in
differential geometry that appeared to involve the same kinds of expressions. These were not in any way related to quantum corrections of any sort, but rather were the exploration of the global structure of
fiber bundle
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
s, and specifically, of the
Dirac operator
In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally ...
s on
spin structure In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.
Spin structures have wide applications to mathematic ...
s having
curvature form In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case.
Definition
Let ''G'' be a Lie group with Lie alg ...
s resembling that of the
electromagnetic tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
, both in four and three dimensions (the
Chern–Simons theory
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and Ja ...
). After considerable back and forth, it became clear that the structure of the anomaly could be described with bundles with a non-trivial
homotopy group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homot ...
, or, in physics lingo, in terms of
instanton
An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. M ...
s.
Instantons are a form of
topological soliton
A topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological ...
; they are a solution to the ''classical'' field theory, having the property that they are stable and cannot decay (into
plane wave
In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space.
For any position \vec x in space and any time t, t ...
s, for example). Put differently: conventional field theory is built on the idea of a
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
– roughly speaking, a flat empty space. Classically, this is the "trivial" solution; all fields vanish. However, one can also arrange the (classical) fields in such a way that they have a non-trivial global configuration. These non-trivial configurations are also candidates for the vacuum, for empty space; yet they are no longer flat or trivial; they contain a twist, the instanton. The quantum theory is able to interact with these configurations; when it does so, it manifests as the chiral anomaly.
In mathematics, non-trivial configurations are found during the study of
Dirac operator
In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally ...
s in their fully generalized setting, namely, on
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
s in arbitrary dimensions. Mathematical tasks include finding and classifying structures and configurations. Famous results include the
Atiyah–Singer index theorem
In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the spac ...
for Dirac operators. Roughly speaking, the symmetries of
Minkowski spacetime
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the ...
,
Lorentz invariance
In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a scalar, invariant under any Lorentz transformation. A Lorentz scalar may be generated from e.g., the scalar product of ...
,
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is ...
s, Dirac operators and the U(1)xSU(2)xSU(3)
fiber bundle
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a ...
s can be taken to be a special case of a far more general setting in
differential geometry; the exploration of the various possibilities accounts for much of the excitement in theories such as
string theory; the richness of possibilities accounts for a certain perception of lack of progress.
The Adler–Bell–Jackiw anomaly is seen experimentally, in the sense that it describes the decay of the
neutral pion
In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more g ...
, and specifically, the
width of the decay of the neutral pion into two
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s. The neutral pion itself was discovered in the 1940s; its decay rate (width) was correctly estimated by J. Steinberger in 1949. The correct form of the anomalous divergence of the axial current is obtained by Schwinger in 1951 in a 2D model of electromagnetism and massless fermions. That the decay of the neutral pion is suppressed in the
current algebra analysis of the
chiral model
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning ...
is obtained by Sutherland and Veltman in 1967. An analysis and resolution of this anomalous result is provided by Adler
[ and Bell & Jackiw][ in 1969. A general structure of the anomalies is discussed by Bardeen in 1969.
The ]quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
of the pion indicates it is a bound state of a quark and an anti-quark. However, the quantum number
In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can b ...
s, including parity and angular momentum, taken to be conserved, prohibit the decay of the pion, at least in the zero-loop calculations (quite simply, the amplitudes vanish.) If the quarks are assumed to be massive, not massless, then a chirality
Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object.
An object or a system is ''chiral'' if it is distinguishable from i ...
-violating decay is allowed; however, it is not of the correct size. (Chirality is not a constant of motion In mechanics, a constant of motion is a quantity that is conserved throughout the motion, imposing in effect a constraint on the motion. However, it is a ''mathematical'' constraint, the natural consequence of the equations of motion, rather than ...
of massive spinors; they will change handedness as they propagate, and so mass is itself a chiral symmetry-breaking term. The contribution of the mass is given by the Sutherland and Veltman result; it is termed "PCAC", the partially conserved axial current
In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was aw ...
.) The Adler–Bell–Jackiw analysis provided in 1969 (as well as the earlier forms by Steinberger and Schwinger), do provide the correct decay width for the neutral pion.
Besides explaining the decay of the pion, it has a second very important role. The one loop amplitude includes a factor that counts the grand total number of leptons that can circulate in the loop. In order to get the correct decay width, one must have exactly three generations of quarks, and not four or more. In this way, it plays an important role in constraining the Standard model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. I ...
. It provides a direct physical prediction of the number of quarks that can exist in nature.
Current day research is focused on similar phenomena in different settings, including non-trivial topological configurations of the electroweak theory
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
, that is, the sphaleron
A sphaleron ( el, σφαλερός "slippery") is a static (time-independent) solution to the electroweak field equations of the Standard Model of particle physics, and is involved in certain hypothetical processes that violate baryon and lepton ...
s. Other applications include the hypothetical non-conservation of baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
in GUTs and other theories.
General discussion
In some theories of fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
s with chiral symmetry
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle ...
, the quantization may lead to the breaking of this (global) chiral symmetry. In that case, the charge associated with the chiral symmetry is not conserved. The non-conservation happens in a process of tunneling from one vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
to another. Such a process is called an instanton
An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. M ...
.
In the case of a symmetry related to the conservation of a fermionic particle number, one may understand the creation of such particles as follows. The definition of a particle is different in the two vacuum states between which the tunneling occurs; therefore a state of no particles in one vacuum corresponds to a state with some particles in the other vacuum. In particular, there is a Dirac sea
The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with negative energy. It was first postulated by the British physicist Paul Dirac in 1930 to explain the anomalous negative-energy quantum states predicted by the ...
of fermions and, when such a tunneling happens, it causes the energy level
A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The ...
s of the sea fermions to gradually shift upwards for the particles and downwards for the anti-particles, or vice versa. This means particles which once belonged to the Dirac sea become real (positive energy) particles and particle creation happens.
Technically, in the path integral formulation
The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional ...
, an anomalous symmetry is a symmetry of the action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
, but not of the measure and therefore ''not'' of the generating functional
:
of the quantized theory ( is Planck's action-quantum divided by 2). The measure consists of a part depending on the fermion field