Cerium Monocarbide
   HOME

TheInfoList



OR:

Cerium is a
chemical element A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
; it has
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
Ce and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
58. It is a soft,
ductile Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
, and silvery-white
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
that tarnishes when exposed to air. Cerium is the second element in the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium (el ...
series, and while it often shows the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons ...
of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is considered one of the
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set o ...
s. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure. Despite always occurring in combination with the other rare-earth elements in minerals such as those of the
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium ...
and
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three fluorocarbonate minerals, which includes bastnäsite-(cerium, Ce) with a formula of (Ce, La)CO3F, bastnäsite-(lanthanum, La) with a formula of (La, Ce)CO3F, and bastnäsite-(yt ...
groups, cerium is easy to extract from its ores, as it can be distinguished among the lanthanides by its unique ability to be oxidized to the +4 state in aqueous solution. It is the most common of the lanthanides, followed by
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
,
lanthanum Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements bet ...
, and
praseodymium Praseodymium is a chemical element; it has symbol Pr and atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic ...
. Its estimated abundance in the Earth's crust is 68  ppm. Cerium was the first of the lanthanides to be discovered, in
Bastnäs Bastnäs ( or ) is an ore field near Riddarhyttan, Västmanland, Sweden. The mines in Bastnäs were earliest mentioned in 1692. Iron, copper and rare-earth elements were extracted from the mines and 4,500 tons of cerium was produced between 1875 a ...
, Sweden. It was discovered by
Jöns Jakob Berzelius Jöns is a Swedish given name and a surname. Notable people with the given name include: * Jöns Jacob Berzelius (1779–1848), Swedish chemist * Jöns Budde (1435–1495), Franciscan friar from the Brigittine monastery in NaantaliVallis Grati ...
and
Wilhelm Hisinger Wilhelm Hisinger (23 December 1766 – 28 June 1852) was a Swedish physicist and chemist who in 1807, working in coordination with Jöns Jakob Berzelius, noted that in electrolysis any given substance always went to the same pole, and that substan ...
in 1803, and independently by
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
in Germany in the same year. In 1839
Carl Gustaf Mosander Carl Gustaf Mosander (10 September 1797 – 15 October 1858) was a Swedish chemist. He discovered the rare earth elements lanthanum, erbium and terbium. Early life and education Born in Kalmar, Mosander attended school there until he move ...
separated cerium(III) oxide from other rare earths, and in 1875
William Francis Hillebrand William Francis Hillebrand (December 12, 1853 – February 7, 1925) was an American chemist. Biography He was the son of the renowned botanist William Hillebrand. He studied at Cornell University and then in Germany at the University of Heidelb ...
became the first to isolate the metal. Today, cerium and its compounds have a variety of uses: for example,
cerium(IV) oxide Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial produc ...
is used to polish glass and is an important part of
catalytic converter A catalytic converter part is an vehicle emissions control, exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalysis, catalyzing a redox ...
s. Cerium metal is used in
ferrocerium Ferrocerium (also known in Europe as Auermetall) is a synthetic pyrophoric alloy of mischmetal (cerium, lanthanum, neodymium, other trace lanthanides and some iron – about 95% lanthanides and 5% iron) hardened by blending in oxides ...
lighters for its
pyrophoric A substance is pyrophoric (from , , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are organolithium compounds and triethylb ...
properties. Cerium-doped YAG phosphor is used in conjunction with blue
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
s to produce white light in most commercial white LED light sources.


Characteristics


Physical

Cerium is the second element of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium (el ...
series. In the periodic table, it appears between the lanthanides
lanthanum Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements bet ...
to its left and
praseodymium Praseodymium is a chemical element; it has symbol Pr and atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic ...
to its right, and above the
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
. It is a
ductile Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
metal with a hardness similar to that of
silver Silver is a chemical element; it has Symbol (chemistry), symbol Ag () and atomic number 47. A soft, whitish-gray, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. ...
. Its 58 electrons are arranged in the
configuration Configuration or configurations may refer to: Computing * Computer configuration or system configuration * Configuration file, a software file used to configure the initial settings for a computer program * Configurator, also known as choice board ...
ef5d6s, of which the four outer electrons are
valence electron In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with b ...
s. The 4f, 5d, and 6s energy levels are very close to each other, and the transfer of one electron to the 5d shell is due to strong interelectronic repulsion in the compact 4f shell. This effect is overwhelmed when the atom is positively ionised; thus Ce on its own has instead the regular configuration ef, although in some solid solutions it may be ef5d. Most lanthanides can use only three electrons as valence electrons, as afterwards the remaining 4f electrons are too strongly bound: cerium is an exception because of the stability of the empty f-shell in Ce and the fact that it comes very early in the lanthanide series, where the nuclear charge is still low enough until
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
to allow the removal of the fourth valence electron by chemical means. Cerium has a variable
electronic structure Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ...
. The energy of the 4f electron is nearly the same as that of the outer 5d and 6s electrons that are delocalized in the metallic state, and only a small amount of energy is required to change the relative occupancy of these electronic levels. This gives rise to dual valence states. For example, a volume change of about 10% occurs when cerium is subjected to high pressures or low temperatures. In its high pressure phase (α-Cerium), the 4f electrons are also delocalized and itinerate, as opposed to localized 4f electrons in low pressure phase (γ-Cerium). It appears that the valence changes from about 3 to 4 when it is cooled or compressed.


Chemical properties of the element

Like the other lanthanides, cerium metal is a good
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are common reducing agents include hydrogen, carbon ...
, having
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
of ''E'' = −2.34 V for the Ce/Ce couple. It tarnishes in air, forming a passivating oxide layer like
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
rust. A centimeter-sized sample of cerium metal corrodes completely in about a year. More dramatically, metallic cerium can be highly
pyrophoric A substance is pyrophoric (from , , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are organolithium compounds and triethylb ...
: : Being highly
electropositive Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
, cerium reacts with water. The reaction is slow with cold water but speeds up with increasing temperature, producing cerium(III) hydroxide and hydrogen gas: :


Allotropes

Four
allotropic Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
forms of cerium are known to exist at standard pressure and are given the common labels of α to δ: * The high-temperature form, δ-cerium, has a bcc (
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the Crystal structure#Unit cell, unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There ...
) crystal structure and exists above 726 °C. * The stable form below 726 °C to approximately room temperature is γ-cerium, with an fcc (
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties o ...
) crystal structure. * The DHCP (double
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or Lattice (group), lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fract ...
) form β-cerium is the equilibrium structure approximately from room temperature to −150 °C. * The fcc form α-cerium is stable below about −150 °C; it has a density of 8.16 g/cm. * Other solid phases occurring only at high pressures are shown on the phase diagram. * Both γ and β forms are quite stable at room temperature, although the equilibrium transformation temperature is estimated at 75 °C. At lower temperatures the behavior of cerium is complicated by the slow rates of transformation. Transformation temperatures are subject to substantial hysteresis and values quoted here are approximate. Upon cooling below −15 °C, γ-cerium starts to change to β-cerium, but the transformation involves a volume increase and, as more β forms, the internal stresses build up and suppress further transformation. Cooling below approximately −160 °C will start formation of α-cerium but this is only from remaining γ-cerium. β-cerium does not significantly transform to α-cerium except in the presence of stress or deformation. At atmospheric pressure, liquid cerium is more dense than its solid form at the melting point.


Isotopes

Naturally occurring cerium is made up of four isotopes: Ce (0.19%), Ce (0.25%), Ce (88.4%), and Ce (11.1%). All four are
observationally stable Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuc ...
, though the light isotopes Ce and Ce are theoretically expected to undergo
double electron capture Double electron capture is a decay mode of an atomic nucleus. For a nuclide (''A'', ''Z'') with a number of nucleons ''A'' and atomic number ''Z'', double electron capture is only possible if the mass of the nuclide (''A'', ''Z''−2) is lower. I ...
to isotopes of
barium Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Th ...
, and the heaviest isotope 142Ce is expected to undergo double beta decay to 142Nd or alpha decay to 138Ba. Thus, 140Ce is the only theoretically
stable isotope Stable nuclides are Isotope, isotopes of a chemical element whose Nucleon, nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The Atomic nucleus, nuclei of such isotopes are no ...
. None of these decay modes have yet been observed, though the double beta decay of 136Ce, 138Ce, and 142Ce have been experimentally searched for. The current experimental limits for their half-lives are: :136Ce: >3.8×1016 y :138Ce: >5.7×1016 y :142Ce: >5.0×1016 y All other cerium isotopes are
synthetic Synthetic may refer to: Science * Synthetic biology * Synthetic chemical or compound, produced by the process of chemical synthesis * Synthetic elements, chemical elements that are not naturally found on Earth and therefore have to be created in ...
and
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. The most stable of them are 144Ce with a half-life of 284.9 days, 139Ce with a half-life of 137.6 days, and 141Ce with a half-life of 32.5 days. All other radioactive cerium isotopes have half-lives under four days, and most of them have half-lives under ten minutes. The isotopes between 140Ce and 144Ce inclusive occur as
fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the releas ...
s of
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
. The primary decay mode of the isotopes lighter than 140Ce is
inverse beta decay In nuclear and particle physics, inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detect ...
or
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
to
isotopes of lanthanum Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterize ...
, while that of the heavier isotopes is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
to isotopes of praseodymium. Some
isotopes of neodymium Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotop ...
can
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
or are predicted to decay to isotopes of cerium. The rarity of the proton-rich 136Ce and 138Ce is explained by the fact that they cannot be made in the most common processes of
stellar nucleosynthesis In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
for elements beyond iron, the
s-process The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynt ...
(slow
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
) and the
r-process In nuclear astrophysics, the rapid neutron-capture process, also known as the ''r''-process, is a set of nuclear reactions that is responsible for nucleosynthesis, the creation of approximately half of the Atomic nucleus, atomic nuclei Heavy meta ...
(rapid neutron capture). This is so because they are bypassed by the reaction flow of the s-process, and the r-process nuclides are blocked from decaying to them by more neutron-rich stable nuclides. Such nuclei are called
p-nuclei p-nuclei (''p'' stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process. Definition The classical, gro ...
, and their origin is not yet well understood: some speculated mechanisms for their formation include
proton capture Proton capture is a nuclear reaction in which an atomic nucleus and one or more protons collide and merge to form a heavier nucleus. Since protons have positive electric charge, they are repelled electrostatically by the positively charged nucleu ...
as well as
photodisintegration Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The ...
. 140Ce is the most common isotope of cerium, as it can be produced in both the s- and r-processes, while 142Ce can only be produced in the r-process. Another reason for the abundance of 140Ce is that it is a magic nucleus, having a closed neutron shell (it has 82 neutrons), and hence it has a very low
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture and engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **A ...
towards further neutron capture. Although its proton number of 58 is not magic, it is granted additional stability, as its eight additional protons past the magic number 50 enter and complete the 1g proton orbital. The abundances of the cerium isotopes may differ very slightly in natural sources, because Ce and Ce are the daughters of the long-lived
primordial radionuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s La and Nd, respectively.


Compounds

Cerium exists in two main oxidation states, Ce(III) and Ce(IV). This pair of adjacent oxidation states dominates several aspects of the chemistry of this element. Cerium(IV) aqueous solutions may be prepared by reacting cerium(III) solutions with the strong oxidizing agents
peroxodisulfate The peroxydisulfate ion, , is an oxyanion, the anion of peroxydisulfuric acid. It is commonly referred to as persulfate, but this term also refers to the peroxomonosulfate ion, . It is also called ''peroxodisulfate''. Approximately 500,000 tons o ...
or bismuthate. The value of ''E''(Ce/Ce) varies widely depending on conditions due to the relative ease of complexation and hydrolysis with various anions, although +1.72 V is representative. Cerium is the only lanthanide which has important aqueous and coordination chemistry in the +4 oxidation state.


Halides

Cerium forms all four trihalides CeX (X = F, Cl, Br, I) usually by reaction of the oxides with the hydrogen halides. The anhydrous halides are pale-colored, paramagnetic, hygroscopic solids. Upon hydration, the trihalides convert to complexes containing aquo complexes
e(HO) E, or e, is the fifth Letter (alphabet), letter and the second vowel#Written vowels, vowel letter of the Latin alphabet, used in the English alphabet, modern English alphabet, the alphabets of other western European languages and others wo ...
Unlike most lanthanides, Ce forms a tetrafluoride, a white solid. It also forms a bronze-colored diiodide, which has metallic properties. Aside from the binary halide phases, a number of anionic halide complexes are known. The fluoride gives the Ce(IV) derivatives and . The chloride gives the orange .


Oxides and chalcogenides

Cerium(IV) oxide Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial produc ...
("ceria") has the
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs scal ...
structure, similarly to the dioxides of praseodymium and
terbium Terbium is a chemical element; it has Symbol (chemistry), symbol Tb and atomic number 65. It is a silvery-white, rare earth element, rare earth metal that is malleable and ductile. The ninth member of the lanthanide series, terbium is a fairly ele ...
. Ceria is a
nonstoichiometric compound Non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); most often, in su ...
, meaning that the real formula is CeO, where x is about 0.2. Thus, the material is not perfectly described as Ce(IV). Ceria reduces to
cerium(III) oxide Cerium(III) oxide, also known as cerium oxide, cerium trioxide, cerium sesquioxide, cerous oxide or dicerium trioxide, is an oxide of the rare-earth metal cerium. It has chemical formula and is gold-yellow in color. According to X-ray crystallo ...
with hydrogen gas. Many nonstoichiometric
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the rad ...
ides are also known, along with the trivalent CeZ (Z = S, Se, Te). The monochalcogenides CeZ conduct electricity and would better be formulated as CeZe. While CeZ are known, they are polychalcogenides with cerium(III): cerium(IV) derivatives of S, Se, and Te are unknown.


Cerium(IV) complexes

The compound
ceric ammonium nitrate Ceric ammonium nitrate (CAN) is the inorganic compound with the formula . This orange-red, water-soluble cerium salt is a specialised oxidizing agent in organic synthesis and a standard oxidant in quantitative analysis. Preparation, properties, ...
(CAN) is the most common cerium compound encountered in the laboratory. The six nitrate ligands bind as
bidentate ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's ...
s. The complex is 12-coordinate, a high coordination number which emphasizes the large size of the Ce4+ ion. CAN is a popular oxidant in
organic synthesis Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the gen ...
, both as a stoichiometric reagent and as a catalyst. It is inexpensive, stable in air, easily handled, and of low toxicity. It operates by one-electron redox. Cerium nitrates also form 4:3 and 1:1 complexes with 18-crown-6 (the ratio referring to that between the nitrate and the
crown ether In organic chemistry, crown ethers are cyclic chemical compounds that consist of a ring containing several ether groups (). The most common crown ethers are cyclic oligomers of ethylene oxide, the repeating unit being ethyleneoxy, i.e., . Impor ...
). Classically, CAN is a primary standard for quantitative analysis. Cerium(IV) salts, especially cerium(IV) sulfate, are often used as standard reagents for
volumetric analysis Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of Quantitative research, quantitative Analytical chemistry, chemical analysis to determine the concentration of an identified analyte (a substance to be ...
in cerimetric titrations. Due to ligand-to-metal charge transfer, aqueous cerium(IV) ions are orange-yellow. Aqueous cerium(IV) is metastable in water and is a strong oxidizing agent that oxidizes
hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
to give
chlorine Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
gas. In the
Belousov–Zhabotinsky reaction A Belousov–Zhabotinsky reaction, or BZ reaction, is one of a class of reactions that serve as a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator. The only common element in ...
, cerium oscillates between the +4 and +3 oxidation states to catalyze the reaction.


Organocerium compounds

Organocerium chemistry is similar to that of the other
lanthanides The lanthanide () or lanthanoid () series of chemical elements comprises at least the 14 Metal, metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals. Lutetium ...
, often involving complexes of
cyclopentadienyl Cyclopentadienyl can refer to * Cyclopentadienyl anion, or cyclopentadienide, ** Cyclopentadienyl ligand * Cyclopentadienyl radical, • * Cyclopentadienyl cation, See also * Pentadienyl {{Chemistry index ...
and cyclooctatetraenyl ligands. Cerocene adopts the
uranocene Uranocene, U(C8H8)2, is an organouranium compound composed of a uranium atom sandwiched between two cyclooctatetraene, cyclooctatetraenide rings. It was one of the first Organoactinide chemistry, organoactinide compounds to be synthesized. It is a ...
molecular structure. The 4f electron in cerocene is poised ambiguously between being localized and delocalized and this compound is considered intermediate-valent.
Alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl group is derived from a cy ...
, alkynyl, and
alkenyl In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or at the terminal position. Terminal alkenes are also known as α-olefins. The International Union of Pu ...
organocerium derivatives are prepared from the
transmetallation Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form: :M1–R + M2–R′ → M1–R′ + M2–R where R and R′ can be, but ...
of the respective
organolithium In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom ...
or Grignard reagents, and are more
nucleophilic In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they a ...
but less basic than their precursors.


History

Cerium was discovered in
Bastnäs Bastnäs ( or ) is an ore field near Riddarhyttan, Västmanland, Sweden. The mines in Bastnäs were earliest mentioned in 1692. Iron, copper and rare-earth elements were extracted from the mines and 4,500 tons of cerium was produced between 1875 a ...
in Sweden by
Jöns Jakob Berzelius Jöns is a Swedish given name and a surname. Notable people with the given name include: * Jöns Jacob Berzelius (1779–1848), Swedish chemist * Jöns Budde (1435–1495), Franciscan friar from the Brigittine monastery in NaantaliVallis Grati ...
and
Wilhelm Hisinger Wilhelm Hisinger (23 December 1766 – 28 June 1852) was a Swedish physicist and chemist who in 1807, working in coordination with Jöns Jakob Berzelius, noted that in electrolysis any given substance always went to the same pole, and that substan ...
, and independently in Germany by
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
, both in 1803. Cerium was named by Berzelius after the asteroid Ceres, formally 1 Ceres, discovered two years earlier. Ceres was initially considered to be a planet at the time. The asteroid is itself named after the Roman goddess Ceres, goddess of agriculture, grain crops, fertility and motherly relationships. Cerium was originally isolated in the form of its oxide, which was named ''ceria'', a term that is still used. The metal itself was too electropositive to be isolated by then-current smelting technology, a characteristic of rare-earth metals in general. After the development of
electrochemistry Electrochemistry is the branch of physical chemistry concerned with the relationship between Electric potential, electrical potential difference and identifiable chemical change. These reactions involve Electron, electrons moving via an electronic ...
by
Humphry Davy Sir Humphry Davy, 1st Baronet (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several Chemical element, e ...
five years later, the earths soon yielded the metals they contained. Ceria, as isolated in 1803, contained all of the lanthanides present in the cerite ore from Bastnäs, Sweden, and thus only contained about 45% of what is now known to be pure ceria. It was not until
Carl Gustaf Mosander Carl Gustaf Mosander (10 September 1797 – 15 October 1858) was a Swedish chemist. He discovered the rare earth elements lanthanum, erbium and terbium. Early life and education Born in Kalmar, Mosander attended school there until he move ...
succeeded in removing lanthana and "didymia" in the late 1830s that ceria was obtained pure. Wilhelm Hisinger was a wealthy mine-owner and amateur scientist, and sponsor of Berzelius. He owned and controlled the mine at Bastnäs, and had been trying for years to find out the composition of the abundant heavy gangue rock (the "Tungsten of Bastnäs", which despite its name contained no
tungsten Tungsten (also called wolfram) is a chemical element; it has symbol W and atomic number 74. It is a metal found naturally on Earth almost exclusively in compounds with other elements. It was identified as a distinct element in 1781 and first ...
), now known as cerite, that he had in his mine. Mosander and his family lived for many years in the same house as Berzelius, and Mosander was undoubtedly persuaded by Berzelius to investigate ceria further. The element played a role in the
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
, where cerium compounds were investigated in the
Berkeley Berkeley most often refers to: *Berkeley, California, a city in the United States **University of California, Berkeley, a public university in Berkeley, California *George Berkeley (1685–1753), Anglo-Irish philosopher Berkeley may also refer to ...
site as materials for
crucible A crucible is a container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperat ...
s for
uranium Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
and
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
casting. For this reason, new methods for the preparation and casting of cerium were developed within the scope of the
Ames AMES, short Air Ministry Experimental Station, was the name given to the British Air Ministry's radar development team at Bawdsey Manor (afterwards RAF Bawdsey) in the immediate pre-World War II era. The team was forced to move on three occasion ...
daughter project (now the
Ames Laboratory Ames National Laboratory, formerly Ames Laboratory, is a United States Department of Energy national laboratory located in Ames, Iowa, and affiliated with Iowa State University. It is a top-level national laboratory for research on national sec ...
). Production of extremely pure cerium in Ames commenced in mid-1944 and continued until August 1945.


Occurrence and production

Cerium is the most abundant of all the lanthanides and the 25th most abundant element, making up 68  ppm of the Earth's crust. This value is the same of
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
, and cerium is even more abundant than common metals such as
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
(13 ppm) and
tin Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
(2.1 ppm). Thus, despite its position as one of the so-called
rare-earth metal The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set of ...
s, cerium is actually not rare at all. Cerium content in the soil varies between 2 and 150 ppm, with an average of 50 ppm; seawater contains 1.5 parts per trillion of cerium. Cerium occurs in various minerals, but the most important commercial sources are the minerals of the
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium ...
and
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three fluorocarbonate minerals, which includes bastnäsite-(cerium, Ce) with a formula of (Ce, La)CO3F, bastnäsite-(lanthanum, La) with a formula of (La, Ce)CO3F, and bastnäsite-(yt ...
groups, where it makes up about half of the lanthanide content. Monazite-(Ce) is the most common representative of the monazites, with "-Ce" being the Levinson suffix informing on the dominance of the particular REE element representative. Also the cerium-dominant bastnäsite-(Ce) is the most important of the bastnäsites. Cerium is the easiest lanthanide to extract from its minerals because it is the only one that can reach a stable +4 oxidation state in aqueous solution. Because of the decreased solubility of cerium in the +4 oxidation state, cerium is sometimes depleted from rocks relative to the other rare-earth elements and is incorporated into
zircon Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of th ...
, since Ce4+ and Zr4+ have the same charge and similar ionic radii. In extreme cases, cerium(IV) can form its own minerals separated from the other rare-earth elements, such as cerianite-(Ce) and . Bastnäsite, LnCOF, is usually lacking in
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
and the heavy lanthanides beyond
samarium Samarium is a chemical element; it has symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of s ...
and
europium Europium is a chemical element; it has symbol Eu and atomic number 63. It is a silvery-white metal of the lanthanide series that reacts readily with air to form a dark oxide coating. Europium is the most chemically reactive, least dense, and soft ...
, and hence the extraction of cerium from it is quite direct. First, the bastnäsite is purified, using dilute
hydrochloric acid Hydrochloric acid, also known as muriatic acid or spirits of salt, is an aqueous solution of hydrogen chloride (HCl). It is a colorless solution with a distinctive pungency, pungent smell. It is classified as a acid strength, strong acid. It is ...
to remove
calcium carbonate Calcium carbonate is a chemical compound with the chemical formula . It is a common substance found in Rock (geology), rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skel ...
impurities. The ore is then roasted in the air to oxidize it to the lanthanide oxides: while most of the lanthanides will be oxidized to the sesquioxides , cerium will be oxidized to the dioxide CeO. This is insoluble in water and can be leached out with 0.5 M hydrochloric acid, leaving the other lanthanides behind. The procedure for
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium ...
, , which usually contains all the rare earths, as well as thorium, is more involved. Monazite, because of its magnetic properties, can be separated by repeated electromagnetic separation. After separation, it is treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula . It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly corrosive base (chemistry), ...
to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that, the solution is treated with
ammonium oxalate Ammonium oxalate is a chemical compound with the chemical formula . Its formula is often written as or . It is an ammonium salt of oxalic acid. It consists of ammonium cations () and oxalate anions (). The structure of ammonium oxalate is . A ...
to convert rare earths to their insoluble
oxalate Oxalate (systematic IUPAC name: ethanedioate) is an anion with the chemical formula . This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (), and several esters such as ...
s. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid, but cerium oxide is insoluble in HNO3 and hence precipitates out. Care must be taken when handling some of the residues as they contain 228Ra, the daughter of 232Th, which is a strong gamma emitter.


Applications

Cerium has two main applications, both of which use CeO2. The industrial application of ceria is for polishing, especially chemical-mechanical planarization (CMP). In its other main application, CeO2 is used to decolorize glass. It functions by converting green-tinted ferrous impurities to nearly colorless ferric oxides. Ceria has also been used as a substitute for its radioactive congener
thoria ''Thoria'' is a genus of shield bugs in the tribe The term tribe is used in many different contexts to refer to a category of human social group. The predominant worldwide use of the term in English is in the discipline of anthropolog ...
, for example in the manufacture of electrodes used in
gas tungsten arc welding Gas tungsten arc welding (GTAW, also known as tungsten inert gas welding or TIG, tungsten argon gas welding or TAG, and heliarc welding when helium is used) is an arc welding process that uses a non-consumable tungsten electrode to produce the ...
, where cerium as an alloying element improves arc stability and ease of starting while decreasing burn-off.


Gas mantles and pyrophoric alloys

The first use of cerium was in
gas mantle A Coleman white gas lantern mantle glowing at full brightness An incandescent gas mantle, gas mantle or Welsbach mantle is a device for generating bright white light when heated by a flame. The name refers to its original heat source in gas li ...
s, invented by Austrian chemist
Carl Auer von Welsbach Carl Auer von Welsbach (1 September 1858 – 4 August 1929), who received the Austrian noble title of Freiherr Auer von Welsbach in 1901, was an Austrian scientist and inventor, who separated didymium into the elements neodymium and praseody ...
. In 1885, he had previously experimented with mixtures of
magnesium Magnesium is a chemical element; it has Symbol (chemistry), symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 ...
, lanthanum, and yttrium oxides, but these gave green-tinted light and were unsuccessful. Six years later, he discovered that pure
thorium oxide Thorium oxide may refer to: * Thorium monoxide (thorium(II) oxide), ThO * Thorium dioxide Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is mainly a by-pro ...
produced a much better, though blue, light, and that mixing it with cerium dioxide resulted in a bright white light. Cerium dioxide also acts as a catalyst for the combustion of thorium oxide. This resulted in commercial success for von Welsbach and his invention, and created great demand for thorium. Its production resulted in a large amount of lanthanides being simultaneously extracted as by-products. Applications were soon found for them, especially in the pyrophoric alloy known as "
mischmetal Mischmetal (from – "mixed metal") is an alloy of rare-earth elements. It is also called cerium mischmetal, or rare-earth mischmetal. A typical composition includes approximately 55% cerium, 25% lanthanum, and 15~18% neodymium ...
" composed of 50% cerium, 25% lanthanum, and the remainder being the other lanthanides, that is used widely for lighter flints. Usually iron is added to form the alloy
ferrocerium Ferrocerium (also known in Europe as Auermetall) is a synthetic pyrophoric alloy of mischmetal (cerium, lanthanum, neodymium, other trace lanthanides and some iron – about 95% lanthanides and 5% iron) hardened by blending in oxides ...
, also invented by von Welsbach. Due to the chemical similarities of the lanthanides, chemical separation is not usually required for their applications, such as the addition of mischmetal to steel as an inclusion modifier to improve mechanical properties, or as catalysts for the cracking of petroleum. This property of cerium saved the life of writer
Primo Levi Primo Michele Levi (; 31 July 1919 – 11 April 1987) was a Jewish Italian chemist, partisan, Holocaust survivor and writer. He was the author of several books, collections of short stories, essays, poems and one novel. His best-known works i ...
at the
Auschwitz concentration camp Auschwitz, or Oświęcim, was a complex of over 40 Nazi concentration camps, concentration and extermination camps operated by Nazi Germany in Polish areas annexed by Nazi Germany, occupied Poland (in a portion annexed into Germany in 1939) d ...
, when he found a supply of ferrocerium alloy and bartered it for food.


Pigments and phosphors

The photostability of
pigment A pigment is a powder used to add or alter color or change visual appearance. Pigments are completely or nearly solubility, insoluble and reactivity (chemistry), chemically unreactive in water or another medium; in contrast, dyes are colored sub ...
s can be enhanced by the addition of cerium, as it provides pigments with
lightfastness Lightfastness is a property of a colourant such as dye or pigment that describes its resistance to fading when exposed to light. Dyes and pigments are used for example for dyeing of fabrics, plastics or other materials and manufacturing paints o ...
and prevents clear polymers from darkening in sunlight. An example of a cerium compound used on its own as an inorganic pigment is the vivid red cerium(III) sulfide (cerium sulfide red), which stays chemically inert up to very high temperatures. The pigment is a safer alternative to lightfast but toxic cadmium selenide-based pigments. The addition of cerium oxide to older
cathode-ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a ...
television glass plates was beneficial, as it suppresses the darkening effect from the creation of
F-center An F-center or color center or Farbe center (from the original German ''Farbzentrum'', where ''Farbe'' means ''color'' and ''zentrum'' means ''center'') is a type of crystallographic defect in which an anionic Vacancy defect, vacancy in a crystal ...
defects due to the continuous electron bombardment during operation. Cerium is also an essential component as a
dopant A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optics, optical properties. The amount of dopant is typically very low compared to the material b ...
for
phosphor A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet or ...
s used in CRT TV screens, fluorescent lamps, and later white light-emitting diodes.Cerium dioxide
. nanopartikel.info (2011-02-02)
The most commonly used example is cerium(III)-doped yttrium aluminium garnet (Ce:YAG) which emits green to yellow-green light (550–530 nm) and also behaves as a
scintillator A scintillator ( ) is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate (i.e. re-emit the ab ...
.


Other uses

Cerium salts, such as the sulfides Ce2S3 and Ce3S4, were considered during the
Manhattan Project The Manhattan Project was a research and development program undertaken during World War II to produce the first nuclear weapons. It was led by the United States in collaboration with the United Kingdom and Canada. From 1942 to 1946, the ...
as advanced
refractory materials In materials science, a refractory (or refractory material) is a material that is resistant to Thermal decomposition, decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are Inorganic c ...
for the construction of crucibles which could withstand the high temperatures and strongly reducing conditions when casting plutonium metal. Despite desirable properties, these sulfides were never widely adopted due to practical issues with their synthesis. Cerium is used as alloying element in aluminium to create castable eutectic
aluminium alloys An aluminium alloy (British English, UK/International Union of Pure and Applied Chemistry, IUPAC) or aluminum alloy (North American English, NA; see American and British English spelling differences, spelling differences) is an alloy in which al ...
with 6–16 wt.% Ce, to which other elements such as Mg, Ni, Fe and Mn can be added. These Al-Ce alloys have excellent high temperature strength and are suitable for automotive applications (e.g. in
cylinder head In a piston engine, the cylinder head sits above the cylinders, forming the roof of the combustion chamber. In sidevalve engines the head is a simple plate of metal containing the spark plugs and possibly heat dissipation fins. In more modern ...
s). Other alloys of cerium include Pu-Ce and Pu-Ce-Co plutonium alloys, which have been used as
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
. Other automotive applications for the lower sesquioxide are as a
catalytic converter A catalytic converter part is an vehicle emissions control, exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalysis, catalyzing a redox ...
for the oxidation of CO and NO emissions in the exhaust gases from motor vehicles.


Biological role and precautions

The early lanthanides have been found to be essential to some
methanotrophic Methanotrophs (sometimes called methanophiles) are prokaryotes that metabolize methane as their source of carbon and chemical energy. They are bacteria or archaea, can grow aerobically or anaerobically, and require single-carbon compounds to ...
bacteria living in volcanic mudpots, such as '' Methylacidiphilum fumariolicum'':
lanthanum Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements bet ...
,
cerium Cerium is a chemical element; it has Chemical symbol, symbol Ce and atomic number 58. It is a hardness, soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it ...
,
praseodymium Praseodymium is a chemical element; it has symbol Pr and atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic ...
, and
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
are about equally effective. Cerium is otherwise not known to have biological role in any other organisms, but is not very toxic either; it does not accumulate in the food chain to any appreciable extent. Because it often occurs together with calcium in
phosphate mineral Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate () anion, sometimes with arsenate () and vanadate () substitutions, along with chloride (Cl−), fluoride (F−), and hydroxide (OH−) anions, that also fit in ...
s, and bones are primarily
calcium phosphate The term calcium phosphate refers to a family of materials and minerals containing calcium ions (Ca2+) together with inorganic phosphate anions. Some so-called calcium phosphates contain oxide and hydroxide as well. Calcium phosphates are white ...
, cerium can accumulate in bones in small amounts that are not considered dangerous.
Cerium nitrate Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist. Cerium(III) nitra ...
is an effective topical antimicrobial treatment for
third-degree burn A burn is an injury to skin, or other tissues, caused by heat, electricity, chemicals, friction, or ionizing radiation (such as sunburn, caused by ultraviolet radiation). Most burns are due to heat from hot fluids (called scalding), solids, ...
s, although large doses can lead to cerium poisoning and
methemoglobinemia Methemoglobinemia, or methaemoglobinaemia, is a condition of elevated methemoglobin in the blood. Symptoms may include headache, dizziness, shortness of breath, nausea, poor muscle coordination, and blue-colored skin (cyanosis). Complications ma ...
. Like all rare-earth metals, cerium is of low to moderate toxicity. A strong reducing agent, it ignites spontaneously in air at 65 to 80 °C. Fumes from cerium fires are toxic. Cerium reacts with water to produce hydrogen gas, and thus cerium fires can only be effectively extinguished using class D dry powder extinguishing media. Workers exposed to cerium have experienced itching, sensitivity to heat, and skin lesions. Cerium is not toxic when eaten, but animals injected with large doses of cerium have died due to cardiovascular collapse. Cerium is more dangerous to aquatic organisms because it damages cell membranes; it is not very soluble in water and can cause environmental contamination. Cerium oxide, the most prevalent cerium compound in industrial applications, is not regulated in the United States by the
Occupational Safety and Health Administration The Occupational Safety and Health Administration (OSHA; ) is a regulatory agency of the United States Department of Labor that originally had federal visitorial powers to inspect and examine workplaces. The United States Congress established ...
(OSHA) as a hazardous substance. In Russia, its
occupational exposure limit An occupational exposure limit is an upper limit on the acceptable concentration of a hazardous substance in workplace air for a particular material or class of materials. It is typically set by competent national authorities and enforced by legi ...
is 5 mg/m. Elemental cerium has no established occupational or permissible exposure limits by the OSHA or
American Conference of Governmental Industrial Hygienists The American Conference of Governmental Industrial Hygienists (ACGIH) is a professional association of industrial hygienists and practitioners of related professions, with headquarters in Cincinnati, Ohio. One of its goals is to advance worker pr ...
, though it is classified as a flammable solid and regulated as such under the
Globally Harmonized System of Classification and Labelling of Chemicals The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an internationally agreed-upon standard managed by the United Nations that was set up to replace the assortment of hazardous material classification and labellin ...
. Toxicological reports on cerium compounds have noted their
cytotoxicity Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are toxic metals, toxic chemicals, microbe neurotoxins, radiation particles and even specific neurotransmitters when the system is out of balance. Also some types of d ...
and contributions to pulmonary interstitial fibrosis in workers.


References


Bibliography

* {{Authority control Chemical elements Chemical elements with double hexagonal close-packed structure Lanthanides Reducing agents Pyrophoric materials Materials that expand upon freezing