Bismuthate
Bismuthate is an ion. Its chemical formula is . It has bismuth in its +5 oxidation state. It is a very strong oxidizing agent. It reacts with hot water to make bismuth(III) oxide and oxygen. It also reacts with acids. Sodium bismuthate is the most common bismuthate. It is one of the few sodium compounds Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na+ cation. Sodium is a reactive alkali metal and is much more stable in ionic compounds ... that does not dissolve in water. Related pages * Bismuth(III) chloride * Bismuth(V) fluoride, the other bismuth compound in its +5 oxidation state * Sodium bismuthate * Sodium bismuth titanate References Bismuth compounds Oxometallates {{chem-compound-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sodium Bismuthate
Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide. A related compound with the approximate formula Na3BiO4 alsо exists. Structure Sodium bismuthate adopts an ilmenite structure, consisting of octahedral bismuth(V) centers and sodium cations. The average Bi–O distance is 2.116 Å. The ilmenite structure is related to the corundum structure ( Al2O3) with a layer structure formed by close packed oxygen atoms with the two different cations alternating in octahedral sites. Synthesis Bismuth oxidizes to the +5 oxidation state only with difficulty in the absence of alkali. Synthesis is performed by making a suspension of bismuth trioxide in a boiling ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth(III) Chloride
Bismuth chloride (or butter of bismuth) is an inorganic compound with the chemical formula BiCl3. It is a covalent compound and is the common source of the Bi3+ ion. In the gas phase and in the crystal, the species adopts a pyramidal structure, in accord with VSEPR theory. Preparation Bismuth chloride can be synthesized directly by passing chlorine over bismuth. :2 Bi + 3 Cl2 → 2 BiCl3 or by dissolving bismuth metal in aqua regia, evaporating the mixture to give BiCl3·2H2O, which can be distilled to form the anhydrous trichloride. Alternatively, it may be prepared by adding hydrochloric acid to bismuth oxide and evaporating the solution. :Bi2O3 + 6 HCl → 2 BiCl3 + 3 H2O Also, the compound can be prepared by dissolving bismuth in concentrated nitric acid and then adding solid sodium chloride into this solution. :Bi + 6 HNO3 → Bi(NO3)3 + 3 H2O + 3 NO2 :Bi(NO3)3 + 3 NaCl → BiCl3 + 3 NaNO3 Structure In the gas phase BiCl3 is pyramidal with a Cl–Bi–Cl angle of 97. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth(V) Fluoride
Bismuth pentafluoride is an inorganic compound with the formula BiF5. It is a white solid that is highly reactive. The compound is of interest to researchers but not of particular value. Structure BiF5 is polymeric and consists of linear chains of ''trans''-bridged corner sharing BiF6 octahedra. This is the same structure as ''α''-UF5. Preparation BiF5 can be prepared by treating BiF3 with F2 at 500 °C. :BiF3 + F2 → BiF5 In an alternative synthesis, ClF3 is the fluorinating agent at 350 °C. :BiF3 + ClF3 → BiF5 + ClF Reactions Bismuth pentafluoride is the most reactive of the pnictogen pentafluorides and is an extremely strong fluorinating agent. It reacts vigorously with water to form ozone and oxygen difluoride, and with iodine or sulfur at room temperature. BiF5 fluorinates paraffin oil (hydrocarbons) to fluorocarbon Fluorocarbons are chemical compounds with carbon-fluorine bonds. Compounds that contain many C-F bonds often have distinctive pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth(III) Oxide
Bismuth(III) oxide is a compound of bismuth, and a common starting point for bismuth chemistry. It is found naturally as the mineral bismite (monoclinic) and sphaerobismoite (tetragonal, much more rare), but it is usually obtained as a by-product of the smelting of copper and lead ores. Dibismuth trioxide is commonly used to produce the " Dragon's eggs" effect in fireworks, as a replacement of red lead. Structure The structures adopted by differ substantially from those of arsenic(III) oxide, , and antimony(III) oxide, .Wells, A.F. (1984) ''Structural Inorganic Chemistry''. 5th. London, England: Oxford University Press. p.890 Bismuth oxide, has five crystallographic polymorphs. The room temperature phase, α- has a monoclinic crystal structure. There are three high temperature phases, a tetragonal β-phase, a body-centred cubic γ-phase, a cubic δ- phase and an ε-phase. The room temperature α-phase has a complex structure with layers of oxygen atoms with layers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth
Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs naturally, and its sulfide and oxide forms are important commercial ores. The free element is 86% as dense as lead. It is a brittle metal with a silvery-white color when freshly produced. Surface oxidation generally gives samples of the metal a somewhat rosy cast. Further oxidation under heat can give bismuth a vividly iridescent appearance due to thin-film interference. Bismuth is both the most diamagnetic element and one of the least thermally conductive metals known. Bismuth was formerly understood to be the element with the highest atomic mass whose nuclei do not spontaneously decay. However, in 2003 it was found to be very slightly radioactive. The metal's only primordial isotope, bismuth-209, undergoes alpha decay with a half-l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxidizing Agent
An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ''electron donor''). In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens. In one sense, an oxidizing agent is a chemical species that undergoes a chemical reaction in which it gains one or more electrons. In that sense, it is one component in an oxidation–reduction (redox) reaction. In the second sense, an oxidizing agent is a chemical species that transfers electronegative atoms, usually oxygen, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sodium Compounds
Sodium atoms have 11 electrons, one more than the stable configuration of the noble gas neon. As a result, sodium usually forms ionic compounds involving the Na+ cation. Sodium is a reactive alkali metal and is much more stable in ionic compounds. It can also form intermetallic compounds and organosodium compounds. Sodium compounds are often soluble in water. Metallic sodium Metallic sodium is generally less reactive than potassium and more reactive than lithium. Sodium metal is highly reducing, with the standard reduction potential for the Na+/Na couple being −2.71 volts, though potassium and lithium have even more negative potentials. The thermal, fluidic, chemical, and nuclear properties of molten sodium metal have caused it to be one of the main coolants of choice for the fast breeder reactor. Such nuclear reactors are seen as a crucial step for the production of clean energy. Salts and oxides Sodium compounds are of immense commercial importance, being particularly centr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth Compounds
Bismuth forms mainly trivalent and a few pentavalent compounds. Many of its chemical properties are similar to those of arsenic and antimony, although much less toxic. Oxides and sulfides At elevated temperatures, vaporized bismuth metal and oxygen combine into the yellow trioxide, . Wiberg, p. 768. Greenwood, p. 553. At temperatures above 710 °C, this (molten) oxide corrodes all known oxides and even platinum. Krüger, p. 185 It forms two series of oxyanions in basic conditions: linear, chain-polymeric ; and cubic . In , the anion forms the octamer ; in , the tetramer. The dark red bismuth(V) oxide, , is unstable, liberating gas upon heating. The compound NaBiO3 is a strong oxidant. Greenwood, p. 578. Bismuth sulfide, , occurs naturally in bismuth ores, but can be synthesized from molten bismuth and sulfur. Greenwood, pp. 559–561. Halides In oxidation state +3, bismuth forms salts with all the halogens: , , , and . All hydrolyze in water except . Bismuth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxidation State
In chemistry, the oxidation state, or oxidation number, is the hypothetical Electrical charge, charge of an atom if all of its Chemical bond, bonds to other atoms are fully Ionic bond, ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge. The oxidation state of an atom does not represent the "real" charge on that atom, or any other actual atomic property. This is particularly true of high oxidation states, where the ionization energy required to produce a multiply positive ion is far greater than the energies available in chemical reactions. Additionally, the oxidation states of atoms in a given compound may vary depending on Electronegativities of the elements (data page), the choice of electronegativity scale used in their calculation. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid. The first category of acids are the proton donors, or Brønsted–Lowry acid–base theory, Brønsted–Lowry acids. In the special case of aqueous solutions, proton donors form the hydronium ion H3O+ and are known as Acid–base reaction#Arrhenius theory, Arrhenius acids. Johannes Nicolaus Brønsted, Brønsted and Martin Lowry, Lowry generalized the Arrhenius theory to include non-aqueous solvents. A Brønsted–Lowry or Arrhenius acid usually contains a hydrogen atom bonded to a chemical structure that is still energetically favorable after loss of H+. Aqueous Arrhenius acids have characteristic properties that provide a practical description of an acid. Acids form aqueous solutions with a sour taste, can turn blue litmus red, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sodium Bismuth Titanate
Sodium bismuth titanate or bismuth sodium titanium oxide (NBT or BNT) is a solid inorganic compound of sodium, bismuth, titanium and oxygen with the chemical formula of Na0.5Bi0.5TiO3 or Bi0.5Na0.5TiO3. This compound adopts the perovskite structure. Synthesis Na0.5Bi0.5TiO3 is not a naturally occurring mineral and several synthesis routes to obtain the compound have been developed. It can be easily prepared by solid state reaction between Na2CO3, Bi2O3 and TiO2 at temperatures around 850 °C. Structure The exact room-temperature crystal structure of sodium bismuth titanate has been a matter of debate for several years. Early studies in the 1960s using X-ray diffraction suggested Na0.5Bi0.5TiO3 to adopt either a pseudo-cubic or a rhombohedral crystal structure. In 2010, based on the high-resolution single-crystal X-ray diffraction data, a monoclinic structure (space group Cc) was proposed. On heating, Na0.5Bi0.5TiO3 transforms at 533 ± 5 K to a tetragonal structure (space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |