HOME

TheInfoList



OR:

A cephalopod is any member of the
mollusca Mollusca is a phylum of protostome, protostomic invertebrate animals, whose members are known as molluscs or mollusks (). Around 76,000 extant taxon, extant species of molluscs are recognized, making it the second-largest animal phylum ...
n
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
Cephalopoda (
Greek Greek may refer to: Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group *Greek language, a branch of the Indo-European language family **Proto-Greek language, the assumed last common ancestor of all kno ...
plural , ; "head-feet") such as a
squid A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight cephalopod limb, arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also ...
,
octopus An octopus (: octopuses or octopodes) is a soft-bodied, eight-limbed mollusc of the order Octopoda (, ). The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like oth ...
,
cuttlefish Cuttlefish, or cuttles, are Marine (ocean), marine Mollusca, molluscs of the order (biology), suborder Sepiina. They belong to the class (biology), class Cephalopoda which also includes squid, octopuses, and nautiluses. Cuttlefish have a unique ...
, or
nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
. These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of
arms Arms or ARMS may refer to: *Arm or arms, the upper limbs of the body Arm, Arms, or ARMS may also refer to: People * Ida A. T. Arms (1856–1931), American missionary-educator, temperance leader Coat of arms or weapons *Armaments or weapons **Fi ...
or
tentacle In zoology, a tentacle is a flexible, mobile, and elongated organ present in some species of animals, most of them invertebrates. In animal anatomy, tentacles usually occur in one or more pairs. Anatomically, the tentacles of animals work main ...
s (
muscular hydrostat A muscular hydrostat is a biological structure found in animals. It is used to manipulate items (including food) or to move its host about and consists mainly of muscles with no skeletal support. It performs its hydraulic movement without fluid ...
s) modified from the primitive molluscan foot. Fishers sometimes call cephalopods "inkfish", referring to their common ability to squirt ink. The study of cephalopods is a branch of
malacology Malacology, from Ancient Greek μαλακός (''malakós''), meaning "soft", and λόγος (''lógos''), meaning "study", is the branch of invertebrate zoology that deals with the study of the Mollusca (molluscs or mollusks), the second-largest ...
known as teuthology. Cephalopods became dominant during the
Ordovician The Ordovician ( ) is a geologic period and System (geology), system, the second of six periods of the Paleozoic Era (geology), Era, and the second of twelve periods of the Phanerozoic Eon (geology), Eon. The Ordovician spans 41.6 million years f ...
period, represented by primitive
nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
s. The class now contains two, only distantly related,
extant Extant or Least-concern species, least concern is the opposite of the word extinct. It may refer to: * Extant hereditary titles * Extant literature, surviving literature, such as ''Beowulf'', the oldest extant manuscript written in English * Exta ...
subclasses:
Coleoidea Coleoidea or Dibranchiata is one of the two subclasses of cephalopod molluscs containing all the various taxa popularly thought of as "soft-bodied" or "shell-less" (i.e. octopus, squid and cuttlefish). Unlike its extant sister group Nauti ...
, which includes
octopus An octopus (: octopuses or octopodes) is a soft-bodied, eight-limbed mollusc of the order Octopoda (, ). The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like oth ...
es,
squid A squid (: squid) is a mollusc with an elongated soft body, large eyes, eight cephalopod limb, arms, and two tentacles in the orders Myopsida, Oegopsida, and Bathyteuthida (though many other molluscs within the broader Neocoleoidea are also ...
, and
cuttlefish Cuttlefish, or cuttles, are Marine (ocean), marine Mollusca, molluscs of the order (biology), suborder Sepiina. They belong to the class (biology), class Cephalopoda which also includes squid, octopuses, and nautiluses. Cuttlefish have a unique ...
; and
Nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
ea, represented by ''
Nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
'' and ''
Allonautilus The genus ''Allonautilus'' contains two species of nautiluses, which have a significantly different Morphology (biology), morphology from those placed in the sister taxon ''Nautilus (genus), Nautilus''. Mitogenome comparisons between ''Allonautil ...
''. In the Coleoidea, the molluscan shell has been internalized or is absent, whereas in the Nautiloidea, the external shell remains. About 800 living
species A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
of cephalopods have been identified. Two important extinct
taxa In biology, a taxon (back-formation from ''taxonomy''; : taxa) is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and ...
are the
Ammonoidea Ammonoids are extinct, (typically) coiled-shelled cephalopods comprising the subclass Ammonoidea. They are more closely related to living octopuses, squid, and cuttlefish (which comprise the clade Coleoidea) than they are to nautiluses (family N ...
(ammonites) and Belemnoidea (belemnites). Extant cephalopods range in size from the 10 mm (0.3 in) '' Idiosepius thailandicus'' to the 700 kilograms (1,500 lb) heavy colossal squid, the largest extant
invertebrate Invertebrates are animals that neither develop nor retain a vertebral column (commonly known as a ''spine'' or ''backbone''), which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordata, chordate s ...
.


Distribution

There are over 800
extant Extant or Least-concern species, least concern is the opposite of the word extinct. It may refer to: * Extant hereditary titles * Extant literature, surviving literature, such as ''Beowulf'', the oldest extant manuscript written in English * Exta ...
species of cephalopod, although new species continue to be described. An estimated 11,000 extinct
taxa In biology, a taxon (back-formation from ''taxonomy''; : taxa) is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and ...
have been described, although the soft-bodied nature of cephalopods means they are not easily fossilised. Cephalopods are found in all the oceans of Earth. None of them can tolerate
fresh water Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salt (chemistry), salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include ...
, but the brief squid, '' Lolliguncula brevis'', found in
Chesapeake Bay The Chesapeake Bay ( ) is the largest estuary in the United States. The bay is located in the Mid-Atlantic (United States), Mid-Atlantic region and is primarily separated from the Atlantic Ocean by the Delmarva Peninsula, including parts of the Ea ...
, is a notable partial exception in that it tolerates
brackish water Brackish water, sometimes termed brack water, is water occurring in a natural environment that has more salinity than freshwater, but not as much as seawater. It may result from mixing seawater (salt water) and fresh water together, as in estuary ...
. Cephalopods are thought to be unable to live in fresh water due to multiple biochemical constraints, and in their >400 million year existence have never ventured into fully freshwater habitats. Cephalopods occupy most of the depth of the ocean, from the
abyssal plain An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between . Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains cover more than 50% of the Earth's surface. They ...
s to the sea surface, and have also been found in the
hadal zone The hadal zone, also known as the hadopelagic zone, is the deep sea, deepest region of the ocean, lying within oceanic trenches. The hadal zone ranges from around below sea level, and exists in long, narrow, topographic V-shaped depressions. T ...
. Their diversity is greatest near the equator (~40 species retrieved in nets at 11°N by a diversity study) and decreases towards the poles (~5 species captured at 60°N).


Biology


Nervous system and behavior

Cephalopods are widely regarded as the most intelligent of the
invertebrate Invertebrates are animals that neither develop nor retain a vertebral column (commonly known as a ''spine'' or ''backbone''), which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordata, chordate s ...
s and have well-developed senses and large
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
s (larger than those of
gastropod Gastropods (), commonly known as slugs and snails, belong to a large Taxonomy (biology), taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (). This class comprises snails and slugs from saltwater, freshwater, and fro ...
s). The
nervous system In biology, the nervous system is the complex system, highly complex part of an animal that coordinates its behavior, actions and sense, sensory information by transmitting action potential, signals to and from different parts of its body. Th ...
of cephalopods is the most complex of the invertebrates and their brain-to-body-mass ratio falls between that of
endotherm An endotherm (from Greek ἔνδον ''endon'' "within" and θέρμη ''thermē'' "heat") is an organism that maintains its body at a metabolically favorable temperature, largely by the use of heat released by its internal bodily functions inst ...
ic and
ectotherm An ectotherm (), more commonly referred to as a "cold-blooded animal", is an animal in which internal physiological sources of heat, such as blood, are of relatively small or of quite negligible importance in controlling body temperature.Dav ...
ic vertebrates. Captive cephalopods have also been known to climb out of their aquaria, maneuver a distance of the lab floor, enter another aquarium to feed on captive crabs, and return to their own aquarium. The brain is protected in a
cartilaginous Cartilage is a resilient and smooth type of connective tissue. Semi-transparent and non-porous, it is usually covered by a tough and fibrous membrane called perichondrium. In tetrapods, it covers and protects the ends of long bones at the joints ...
cranium. The giant
nerve A nerve is an enclosed, cable-like bundle of nerve fibers (called axons). Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the Electrochemistry, electrochemical nerv ...
fibers of the cephalopod mantle have been widely used for many years as experimental material in
neurophysiology Neurophysiology is a branch of physiology and neuroscience concerned with the functions of the nervous system and their mechanisms. The term ''neurophysiology'' originates from the Greek word ''νεῦρον'' ("nerve") and ''physiology'' (whic ...
; their large diameter (due to lack of myelination) makes them relatively easy to study compared with other animals. Many cephalopods are social creatures; when isolated from their own kind, some species have been observed shoaling with fish. Some cephalopods are able to fly through the air for distances of up to . While cephalopods are not particularly aerodynamic, they achieve these impressive ranges by jet-propulsion; water continues to be expelled from the funnel while the organism is in the air. The animals spread their fins and tentacles to form wings and actively control lift force with body posture. One species, '' Todarodes pacificus'', has been observed spreading tentacles in a flat fan shape with a mucus film between the individual tentacles, while another, ''
Sepioteuthis sepioidea The Caribbean reef squid (''Sepioteuthis sepioidea''), commonly called the reef squid, is a species of small, torpedo-shaped squid with undulating fins that extend nearly the entire length of the body, approximately 20 cm (8 in) in length. They ...
'', has been observed putting the tentacles in a circular arrangement.


Senses

Cephalopods have advanced vision, can detect gravity with
statocyst The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, cnidarians, ctenophorans, echinoderms, cephalopods, crustaceans, and gastropods, A similar structure is also found in '' Xenoturbella''. T ...
s, and have a variety of chemical sense organs. Octopuses use their arms to explore their environment and can use them for depth perception.


Vision

Most cephalopods rely on vision to detect predators and prey and to communicate with one another. Consequently, cephalopod vision is acute: training experiments have shown that the
common octopus The common octopus (''Octopus vulgaris'') is a Mollusca, mollusk belonging to the class Cephalopoda. ''Octopus vulgaris'' is one of the most studied of all octopus species, and also one of the most intelligent. It ranges from the eastern Atlanti ...
can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects. The morphological construction gives cephalopod eyes the same performance as shark eyes; however, their construction differs, as cephalopods lack a cornea and have an everted retina. Cephalopods' eyes are also sensitive to the plane of polarization of light. Unlike many other cephalopods,
nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
es do not have good vision; their eye structure is highly developed, but lacks a solid
lens A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
. They have a simple " pinhole" eye through which water can pass. Instead of vision, the animal is thought to use
olfaction The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, ...
as the primary sense for
foraging Foraging is searching for wild food resources. It affects an animal's fitness because it plays an important role in an animal's ability to survive and reproduce. Foraging theory is a branch of behavioral ecology that studies the foraging behavi ...
, as well as locating or identifying potential mates. All octopuses and most cephalopods are considered to be color blind. Coleoid cephalopods (octopus, squid, cuttlefish) have a single photoreceptor type and lack the ability to determine color by comparing detected photon intensity across multiple spectral channels. When camouflaging themselves, they use their chromatophores to change brightness and pattern according to the background they see, but their ability to match the specific color of a background may come from cells such as iridophores and leucophores that reflect light from the environment. They also produce visual pigments throughout their body and may sense light levels directly from their body. Evidence of
color vision Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity. Color perception is a part of the larger visual system and is mediated by a co ...
has been found in the sparkling enope squid (''Watasenia scintillans''). It achieves color vision with three photoreceptors, which are based on the same
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become retinylidene proteins, but are usually still called opsins regardless. Most pro ...
, but use distinct
retinal Retinal (also known as retinaldehyde) is a polyene chromophore. Retinal, bound to proteins called opsins, is the chemical basis of visual phototransduction, the light-detection stage of visual perception (vision). Some microorganisms use ret ...
molecules as chromophores: A1 (retinal), A3 (3-dehydroretinal), and A4 (4-hydroxyretinal). The A1-photoreceptor is most sensitive to green-blue (484 nm), the A2-photoreceptor to blue-green (500 nm), and the A4-photoreceptor to blue (470 nm) light. In 2015, a novel mechanism for spectral discrimination in cephalopods was described. This relies on the exploitation of
chromatic aberration In optics, chromatic aberration (CA), also called chromatic distortion, color aberration, color fringing, or purple fringing, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the ...
(wavelength-dependence of focal length). Numerical modeling shows that chromatic aberration can yield useful chromatic information through the dependence of image acuity on accommodation. The unusual off-axis slit and annular pupil shapes in cephalopods enhance this ability by acting as prisms which are scattering white light in all directions.


Photoreception

In 2015, molecular evidence was published indicating that cephalopod chromatophores are photosensitive; reverse transcription polymerase chain reactions (RT-PCR) revealed transcripts encoding
rhodopsin Rhodopsin, also known as visual purple, is a protein encoded by the ''RHO'' gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rod cells. Rhodopsin mediates dim ...
and retinochrome within the retinas and skin of the longfin inshore squid (''Doryteuthis pealeii''), and the common cuttlefish (''Sepia officinalis'') and broadclub cuttlefish ('' Sepia latimanus''). The authors claim this is the first evidence that cephalopod dermal tissues may possess the required combination of molecules to respond to light.


Hearing

Some squids have been shown to detect sound using their
statocyst The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, cnidarians, ctenophorans, echinoderms, cephalopods, crustaceans, and gastropods, A similar structure is also found in '' Xenoturbella''. T ...
s, but, in general, cephalopods are deaf.


Use of light

Most cephalopods possess an assemblage of skin components that interact with light. These may include iridophores, leucophores,
chromatophore Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopod A cephalopod is any member o ...
s and (in some species) photophores. Chromatophores are colored pigment cells that expand and contract in accordance to produce color and pattern which they can use in a startling array of fashions. As well as providing camouflage with their background, some cephalopods bioluminesce, shining light downwards to disguise their shadows from any predators that may lurk below. The
bioluminescence Bioluminescence is the emission of light during a chemiluminescence reaction by living organisms. Bioluminescence occurs in multifarious organisms ranging from marine vertebrates and invertebrates, as well as in some Fungus, fungi, microorgani ...
is produced by bacterial symbionts; the host cephalopod is able to detect the light produced by these organisms.
Bioluminescence Bioluminescence is the emission of light during a chemiluminescence reaction by living organisms. Bioluminescence occurs in multifarious organisms ranging from marine vertebrates and invertebrates, as well as in some Fungus, fungi, microorgani ...
may also be used to entice prey, and some species use colorful displays to impress mates, startle predators, or even communicate with one another.


Coloration

Cephalopods can change their colors and patterns in milliseconds, whether for
signalling A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology. In ...
(both within the species and for warning) or
active camouflage Active camouflage or adaptive camouflage is camouflage that adapts, often rapidly, to the surroundings of an object such as an animal or military vehicle. In theory, active camouflage could provide perfect concealment from visual detection. Acti ...
, as their chromatophores are expanded or contracted."Integument (mollusks)". Encyclopædia Britannica. 2009. Encyclopædia Britannica 2006 Ultimate Reference Suite DVD. Although color changes appear to rely primarily on vision input, there is evidence that skin cells, specifically chromatophores, can detect light and adjust to light conditions independently of the eyes. The octopus changes skin color and texture during quiet and active sleep cycles. Cephalopods can use chromatophores like a muscle, which is why they can change their skin hue as rapidly as they do. Coloration is typically stronger in near-shore species than those living in the open ocean, whose functions tend to be restricted to disruptive camouflage. These chromatophores are found throughout the body of the octopus, however, they are controlled by the same part of the brain that controls elongation during jet propulsion to reduce drag. As such, jetting octopuses can turn pale because the brain is unable to achieve both controlling elongation and controlling the chromatophores. Most octopuses mimic select structures in their field of view rather than becoming a composite color of their full background. Evidence of original coloration has been detected in cephalopod fossils dating as far back as the
Silurian The Silurian ( ) is a geologic period and system spanning 23.5 million years from the end of the Ordovician Period, at million years ago ( Mya), to the beginning of the Devonian Period, Mya. The Silurian is the third and shortest period of t ...
; these orthoconic individuals bore concentric stripes, which are thought to have served as camouflage. Devonian cephalopods bear more complex color patterns, of unknown function.


Chromatophores

Coleoids, a shell-less subclass of cephalopods (squid, cuttlefish, and octopuses), have complex pigment containing cells called chromatophores which are capable of producing rapidly changing color patterns. These cells store pigment within an elastic sac which produces the color seen from these cells. Coleoids can change the shape of this sac, called the cytoelastic sacculus, which then causes changes in the translucency and opacity of the cell. By rapidly changing multiple chromatophores of different colors, cephalopods are able to change the color of their skin at astonishing speeds, an adaptation that is especially notable in an organism that sees in black and white. Chromatophores are known to only contain three pigments, red, yellow, and brown, which cannot create the full color spectrum. However, cephalopods also have cells called iridophores, thin, layered protein cells that reflect light in ways that can produce colors chromatophores cannot. The mechanism of iridophore control is unknown, but chromatophores are under the control of neural pathways, allowing the cephalopod to coordinate elaborate displays. Together, chromatophores and iridophores are able to produce a large range of colors and pattern displays.


Adaptive value

Cephalopods utilize chromatophores' color changing ability in order to camouflage themselves. Chromatophores allow coleoids to blend into many different environments, from coral reefs to the sandy sea floor. The color change of chromatophores works in concert with papillae, epithelial tissue which grows and deforms through hydrostatic motion to change skin texture. Chromatophores are able to perform two types of camouflage, mimicry and color matching. Mimicry is when an organism changes its appearance to appear like a different organism. The squid ''
Sepioteuthis sepioidea The Caribbean reef squid (''Sepioteuthis sepioidea''), commonly called the reef squid, is a species of small, torpedo-shaped squid with undulating fins that extend nearly the entire length of the body, approximately 20 cm (8 in) in length. They ...
'' has been documented changing its appearance to appear as the non threatening herbivorous parrotfish to approach unaware prey. The octopus '' Thaumoctopus mimicus'' is known to mimic a number of different venomous organisms it cohabitates with to deter predators. While background matching, a cephalopod changes its appearance to resemble its surroundings, hiding from its predators or concealing itself from prey. The ability to both mimic other organisms and match the appearance of their surroundings is notable given that cephalopods' vision is monochromatic. Cephalopods also use their fine control of body coloration and patterning to perform complex signaling displays for both conspecific and intraspecific communication. Coloration is used in concert with locomotion and texture to send signals to other organisms. Intraspecifically this can serve as a warning display to potential predators. For example, when the octopus '' Callistoctopus macropus'' is threatened, it will turn a bright red brown color speckled with white dots as a high contrast display to startle predators. Conspecifically, color change is used for both mating displays and social communication. Cuttlefish have intricate mating displays from males to females. There is also male to male signaling that occurs during competition over mates, all of which are the product of chromatophore coloration displays.


Origin

There are two hypotheses about the evolution of color change in cephalopods. One hypothesis is that the ability to change color may have evolved for social, sexual, and signaling functions. Another explanation is that it first evolved because of selective pressures encouraging predator avoidance and stealth hunting. For color change to have evolved as the result of social selection the environment of cephalopods' ancestors would have to fit a number of criteria. One, there would need to be some kind of mating ritual that involved signaling. Two, they would have to experience demonstrably high levels of sexual selection. And three, the ancestor would need to communicate using sexual signals that are visible to a conspecific receiver. For color change to have evolved as the result of natural selection different parameters would have to be met. For one, one would need some phenotypic diversity in body patterning among the population. The species would also need to cohabitate with predators which rely on vision for prey identification. These predators should have a high range of visual sensitivity, detecting not just motion or contrast but also colors. The habitats they occupy would also need to display a diversity of backgrounds. Experiments done in dwarf chameleons testing these hypotheses showed that chameleon taxa with greater capacity for color change had more visually conspicuous social signals but did not come from more visually diverse habitats, suggesting that color change ability likely evolved to facilitate social signaling, while camouflage is a useful byproduct. Because camouflage is used for multiple adaptive purposes in cephalopods, color change could have evolved for one use and the other developed later, or it evolved to regulate trade offs within both.


Convergent evolution

Color change is widespread in ectotherms including anoles, frogs, mollusks, many fish, insects, and spiders. The mechanism behind this color change can be either morphological or physiological. Morphological change is the result of a change in the density of pigment containing cells and tends to change over longer periods of time. Physiological change, the kind observed in cephalopod lineages, is typically the result of the movement of pigment within the chromatophore, changing where different pigments are localized within the cell. This physiological change typically occurs on much shorter timescales compared to morphological change. Cephalopods have a rare form of physiological color change which utilizes neural control of muscles to change the morphology of their chromatophores. This neural control of chromatophores has evolved convergently in both cephalopods and teleosts fishes.


Ink

With the exception of the
Nautilidae A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
and the species of
octopus An octopus (: octopuses or octopodes) is a soft-bodied, eight-limbed mollusc of the order Octopoda (, ). The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like oth ...
belonging to the
suborder Order () is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between family and class. In biological classification, the order is a taxonomic rank used in the classification of organisms and recognized ...
Cirrina, all known cephalopods have an ink sac, which can be used to expel a cloud of dark ink to confuse
predator Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
s. This sac is a muscular bag which originated as an extension of the hindgut. It lies beneath the gut and opens into the anus, into which its contents – almost pure
melanin Melanin (; ) is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes. There are ...
– can be squirted; its proximity to the base of the funnel means the ink can be distributed by ejected water as the cephalopod uses its jet propulsion. The ejected cloud of melanin is usually mixed, upon expulsion, with
mucus Mucus (, ) is a slippery aqueous secretion produced by, and covering, mucous membranes. It is typically produced from cells found in mucous glands, although it may also originate from mixed glands, which contain both Serous fluid, serous and muc ...
, produced elsewhere in the mantle, and therefore forms a thick cloud, resulting in visual (and possibly chemosensory) impairment of the predator, like a smokescreen. However, a more sophisticated behavior has been observed, in which the cephalopod releases a cloud, with a greater mucus content, that approximately resembles the cephalopod that released it (this decoy is referred to as a
pseudomorph In mineralogy, a pseudomorph is a mineral or mineral compound that appears in an atypical form (crystal system), resulting from a substitution process in which the appearance and dimensions remain constant, but the original mineral is replaced b ...
). This strategy often results in the predator attacking the pseudomorph, rather than its rapidly departing prey. For more information, see Inking behaviors. The ink sac of cephalopods has led to a common name of "inkfish", formerly the pen-and-ink fish.


Circulatory system

Cephalopods are the only molluscs with a closed circulatory system. Coleoids have two gill
heart The heart is a muscular Organ (biology), organ found in humans and other animals. This organ pumps blood through the blood vessels. The heart and blood vessels together make the circulatory system. The pumped blood carries oxygen and nutrie ...
s (also known as branchial hearts) that move blood through the capillaries of the
gill A gill () is a respiration organ, respiratory organ that many aquatic ecosystem, aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow r ...
s. A single systemic heart then pumps the oxygenated blood through the rest of the body. Like most molluscs, cephalopods use
hemocyanin Hemocyanins (also spelled haemocyanins and abbreviated Hc) are proteins that transport oxygen throughout the bodies of some invertebrate animals. These metalloproteins contain two copper atoms that reversibly bind a single oxygen molecule (O2 ...
, a copper-containing protein, rather than
hemoglobin Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
, to transport oxygen. As a result, their blood is colorless when deoxygenated and turns blue when bonded to oxygen. In oxygen-rich environments and in acidic water, hemoglobin is more efficient, but in environments with little oxygen and in low temperatures, hemocyanin has the upper hand. The hemocyanin molecule is much larger than the hemoglobin molecule, allowing it to bond with 96 or molecules, instead of the hemoglobin's just four. But unlike hemoglobin, which are attached in millions on the surface of a single red blood cell, hemocyanin molecules float freely in the bloodstream.


Respiration

Cephalopods exchange gases with the seawater by forcing water through their gills, which are attached to the roof of the organism. Water enters the mantle cavity on the outside of the gills, and the entrance of the mantle cavity closes. When the mantle contracts, water is forced through the gills, which lie between the mantle cavity and the funnel. The water's expulsion through the funnel can be used to power jet propulsion. If respiration is used concurrently with jet propulsion, large losses in speed or oxygen generation can be expected. The gills, which are much more efficient than those of other mollusks, are attached to the ventral surface of the mantle cavity. There is a trade-off with gill size regarding lifestyle. To achieve fast speeds, gills need to be small – water will be passed through them quickly when energy is needed, compensating for their small size. However, organisms which spend most of their time moving slowly along the bottom do not naturally pass much water through their cavity for locomotion; thus they have larger gills, along with complex systems to ensure that water is constantly washing through their gills, even when the organism is stationary. The water flow is controlled by contractions of the radial and circular mantle cavity muscles. The gills of cephalopods are supported by a skeleton of robust fibrous proteins; the lack of mucopolysaccharides distinguishes this matrix from cartilage. The gills are also thought to be involved in excretion, with NH4+ being swapped with K+ from the seawater.


Locomotion and buoyancy

While most cephalopods can move by jet propulsion, this is a very energy-consuming way to travel compared to the tail propulsion used by fish. The efficiency of a
propeller A propeller (often called a screw if on a ship or an airscrew if on an aircraft) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon a working flu ...
-driven waterjet (i.e. Froude efficiency) is greater than a
rocket A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to accelerate without using any surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely ...
. The relative efficiency of jet propulsion decreases further as animal size increases; paralarvae are far more efficient than juvenile and adult individuals. Since the Paleozoic era, as competition with
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
produced an environment where efficient motion was crucial to survival, jet propulsion has taken a back role, with fins and
tentacles In zoology, a tentacle is a flexible, mobile, and elongated organ present in some species of animals, most of them invertebrates. In animal anatomy, tentacles usually occur in one or more pairs. Anatomically, the tentacles of animals work main ...
used to maintain a steady velocity. Whilst jet propulsion is never the sole mode of locomotion, the stop-start motion provided by the jets continues to be useful for providing bursts of high speed – not least when capturing
prey Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not ki ...
or avoiding
predator Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common List of feeding behaviours, feeding behaviours that includes parasitism and micropredation ...
s. Indeed, it makes cephalopods the fastest marine invertebrates, and they can out-accelerate most fish. The jet is supplemented with fin motion; in the squid, the fins flap each time that a jet is released, amplifying the thrust; they are then extended between jets (presumably to avoid sinking). Oxygenated water is taken into the mantle cavity to the
gill A gill () is a respiration organ, respiratory organ that many aquatic ecosystem, aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow r ...
s and through muscular contraction of this cavity, the spent water is expelled through the
hyponome A siphon is an anatomical structure which is part of the body of aquatic molluscs in three classes: Gastropoda, Bivalvia and Cephalopoda (members of these classes include saltwater and freshwater snails, clams, octopus, squid and relatives). Sip ...
, created by a fold in the mantle. The size difference between the posterior and anterior ends of this organ control the speed of the jet the organism can produce. The velocity of the organism can be accurately predicted for a given mass and morphology of animal. Motion of the cephalopods is usually backward as water is forced out anteriorly through the hyponome, but direction can be controlled somewhat by pointing it in different directions. Some cephalopods accompany this expulsion of water with a gunshot-like popping noise, thought to function to frighten away potential predators. Cephalopods employ a similar method of propulsion despite their increasing size (as they grow) changing the dynamics of the water in which they find themselves. Thus their paralarvae do not extensively use their fins (which are less efficient at low
Reynolds number In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
s) and primarily use their jets to propel themselves upwards, whereas large adult cephalopods tend to swim less efficiently and with more reliance on their fins. Early cephalopods are thought to have produced jets by drawing their body into their shells, as ''Nautilus'' does today. ''Nautilus'' is also capable of creating a jet by undulations of its funnel; this slower flow of water is more suited to the extraction of oxygen from the water. When motionless, ''Nautilus'' can only extract 20% of oxygen from the water. The jet velocity in ''Nautilus'' is much slower than in coleoids, but less musculature and energy is involved in its production. Jet thrust in cephalopods is controlled primarily by the maximum diameter of the funnel orifice (or, perhaps, the average diameter of the funnel) and the diameter of the mantle cavity. Changes in the size of the orifice are used most at intermediate velocities. The absolute velocity achieved is limited by the cephalopod's requirement to inhale water for expulsion; this intake limits the maximum velocity to eight body-lengths per second, a speed which most cephalopods can attain after two funnel-blows. Water refills the cavity by entering not only through the orifices, but also through the funnel. Squid can expel up to 94% of the fluid within their cavity in a single jet thrust. To accommodate the rapid changes in water intake and expulsion, the orifices are highly flexible and can change their size by a factor of 20; the funnel radius, conversely, changes only by a factor of around 1.5. Some octopus species are also able to walk along the seabed. Squids and cuttlefish can move short distances in any direction by rippling of a flap of
muscle Muscle is a soft tissue, one of the four basic types of animal tissue. There are three types of muscle tissue in vertebrates: skeletal muscle, cardiac muscle, and smooth muscle. Muscle tissue gives skeletal muscles the ability to muscle contra ...
around the mantle. While most cephalopods float (i.e. are neutrally buoyant or nearly so; in fact most cephalopods are about 2–3% denser than seawater), they achieve this in different ways. Some, such as ''
Nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
'', allow gas to diffuse into the gap between the mantle and the shell; others allow purer water to ooze from their kidneys, forcing out denser salt water from the body cavity; others, like some fish, accumulate oils in the liver; and some octopuses have a gelatinous body with lighter
chloride The term chloride refers to a compound or molecule that contains either a chlorine anion (), which is a negatively charged chlorine atom, or a non-charged chlorine atom covalently bonded to the rest of the molecule by a single bond (). The pr ...
ions replacing
sulfate The sulfate or sulphate ion is a polyatomic anion with the empirical formula . Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many ...
in the body chemistry. Squids are the primary sufferers of negative buoyancy in cephalopods. The negative buoyancy means that some squids, especially those whose habitat depths are rather shallow, have to actively regulate their vertical positions. This means that they must expend energy, often through jetting or undulations, in order to maintain the same depth. As such, the cost of transport of many squids are quite high. That being said, squid and other cephalopod that dwell in deep waters tend to be more neutrally buoyant which removes the need to regulate depth and increases their locomotory efficiency. The ''Macrotritopus defilippi'', or the sand-dwelling octopus, was seen mimicking both the coloration and the swimming movements of the sand-dwelling flounder ''Bothus lunatus'' to avoid predators. The octopuses were able to flatten their bodies and put their arms back to appear the same as the flounders as well as move with the same speed and movements. Females of two species, ''Ocythoe tuberculata'' and ''Haliphron atlanticus'', have evolved a true
swim bladder The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ (anatomy), organ in bony fish that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift ...
.


Octopus vs. squid locomotion

Two of the categories of cephalopods, octopus and squid, are vastly different in their movements despite being of the same class. Octopuses are generally not seen as active swimmers; they are often found scavenging the sea floor instead of swimming long distances through the water. Squid, on the other hand, can be found to travel vast distances, with some moving as much as 2,000 km in 2.5 months at an average pace of 0.9 body lengths per second. There is a major reason for the difference in movement type and efficiency: anatomy. Both octopuses and squids have mantles (referenced above) which function towards respiration and locomotion in the form of jetting. The composition of these mantles differs between the two families, however. In octopuses, the mantle is made up of three muscle types: longitudinal, radial, and circular. The longitudinal muscles run parallel to the length of the octopus and they are used in order to keep the mantle the same length throughout the jetting process. Given that they are muscles, it can be noted that this means the octopus must actively flex the longitudinal muscles during jetting in order to keep the mantle at a constant length. The radial muscles run perpendicular to the longitudinal muscles and are used to thicken and thin the wall of the mantle. Finally, the circular muscles are used as the main activators in jetting. They are muscle bands that surround the mantle and expand/contract the cavity. All three muscle types work in unison to produce a jet as a propulsion mechanism. Squids do not have the longitudinal muscles that octopus do. Instead, they have a tunic. This tunic is made of layers of collagen and it surrounds the top and the bottom of the mantle. Because they are made of collagen and not muscle, the tunics are rigid bodies that are much stronger than the muscle counterparts. This provides the squids some advantages for jet propulsion swimming. The stiffness means that there is no necessary muscle flexing to keep the mantle the same size. In addition, tunics take up only 1% of the squid mantle's wall thickness, whereas the longitudinal muscle fibers take up to 20% of the mantle wall thickness in octopuses. Also because of the rigidity of the tunic, the radial muscles in squid can contract more forcefully. The mantle is not the only place where squids have collagen. Collagen fibers are located throughout the other muscle fibers in the mantle. These collagen fibers act as elastics and are sometimes named "collagen springs". As the name implies, these fibers act as springs. When the radial and circular muscles in the mantle contract, they reach a point where the contraction is no longer efficient to the forward motion of the creature. In such cases, the excess contraction is stored in the collagen which then efficiently begins or aids in the expansion of the mantle at the end of the jet. In some tests, the collagen has been shown to be able to begin raising mantle pressure up to 50ms before muscle activity is initiated. These anatomical differences between squid and octopuses can help explain why squid can be found swimming comparably to fish while octopuses usually rely on other forms of locomotion on the sea floor such as bipedal walking, crawling, and non-jetting swimming.


Shell

Nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
es are the only extant cephalopods with a true external shell. However, all molluscan shells are formed from the
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from the o ...
(outer layer of the embryo); in
cuttlefish Cuttlefish, or cuttles, are Marine (ocean), marine Mollusca, molluscs of the order (biology), suborder Sepiina. They belong to the class (biology), class Cephalopoda which also includes squid, octopuses, and nautiluses. Cuttlefish have a unique ...
(''Sepia'' spp.), for example, an invagination of the ectoderm forms during the embryonic period, resulting in a shell ( cuttlebone) that is internal in the adult. The same is true of the chitinous
gladius ''Gladius'' () is a Latin word properly referring to the type of sword that was used by Ancient Rome, ancient Roman foot soldiers starting from the 3rd century BC and until the 3rd century AD. Linguistically, within Latin, the word also came t ...
of squid and octopuses. Cirrate octopods have arch-shaped cartilaginous fin supports, which are sometimes referred to as a "shell vestige" or "gladius". The Incirrina have either a pair of rod-shaped stylets or no vestige of an internal shell, and some squid also lack a gladius. The shelled coleoids do not form a clade or even a paraphyletic group. The '' Spirula'' shell begins as an organic structure, and is then very rapidly mineralized. Shells that are "lost" may be lost by resorption of the calcium carbonate component. Females of the octopus genus '' Argonauta'' secrete a specialized paper-thin egg case in which they reside, and this is popularly regarded as a "shell", although it is not attached to the body of the animal and has a separate evolutionary origin. The largest group of shelled cephalopods, the
ammonite Ammonoids are extinct, (typically) coiled-shelled cephalopods comprising the subclass Ammonoidea. They are more closely related to living octopuses, squid, and cuttlefish (which comprise the clade Coleoidea) than they are to nautiluses (family N ...
s, are extinct, but their shells are very common as
fossil A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserve ...
s. The deposition of carbonate, leading to a mineralized shell, appears to be related to the acidity of the organic shell matrix (see
Mollusc shell The mollusc (or mollusk) shell is typically a calcareous exoskeleton which encloses, supports and protects the soft parts of an animal in the phylum Mollusca, which includes snails, clams, tusk shells, and several other classes. Not all shelled ...
); shell-forming cephalopods have an acidic matrix, whereas the gladius of squid has a basic matrix. The basic arrangement of the cephalopod outer wall is: an outer (spherulitic) prismatic layer, a laminar (nacreous) layer and an inner prismatic layer. The thickness of every layer depends on the taxa. In modern cephalopods, the Ca carbonate is aragonite. As for other mollusc shells or coral skeletons, the smallest visible units are irregular rounded granules.


Head appendages

Cephalopods, as the name implies, have muscular appendages extending from their heads and surrounding their mouths. These are used in feeding, mobility, and even reproduction. In coleoids they number eight or ten. Decapods such as cuttlefish and squid have five pairs. The longer two, termed "
tentacle In zoology, a tentacle is a flexible, mobile, and elongated organ present in some species of animals, most of them invertebrates. In animal anatomy, tentacles usually occur in one or more pairs. Anatomically, the tentacles of animals work main ...
s", are actively involved in capturing prey; they can lengthen rapidly (in as little as 15 milliseconds). In giant squid, they may reach a length of 8 metres. They may terminate in a broadened, sucker-coated club. The shorter four pairs are termed ''
arms Arms or ARMS may refer to: *Arm or arms, the upper limbs of the body Arm, Arms, or ARMS may also refer to: People * Ida A. T. Arms (1856–1931), American missionary-educator, temperance leader Coat of arms or weapons *Armaments or weapons **Fi ...
'', and are involved in holding and manipulating the captured organism. They too have suckers, on the side closest to the mouth; these help to hold onto the prey. Octopods only have four pairs of sucker-coated arms, as the name suggests, though developmental abnormalities can modify the number of arms expressed. The tentacle consists of a thick central nerve cord (which must be thick to allow each sucker to be controlled independently) surrounded by circular and radial muscles. Because the volume of the tentacle remains constant, contracting the circular muscles decreases the radius and permits the rapid increase in length. Typically, a 70% lengthening is achieved by decreasing the width by 23%. The shorter arms lack this capability. The size of the tentacle is related to the size of the buccal cavity; larger, stronger tentacles can hold prey as small bites are taken from it; with more numerous, smaller tentacles, prey is swallowed whole, so the mouth cavity must be larger. Externally shelled nautilids (''
Nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
'' and ''
Allonautilus The genus ''Allonautilus'' contains two species of nautiluses, which have a significantly different Morphology (biology), morphology from those placed in the sister taxon ''Nautilus (genus), Nautilus''. Mitogenome comparisons between ''Allonautil ...
'') have on the order of 90 finger-like appendages, termed ''tentacles'', which lack suckers but are sticky instead, and are partly retractable.


Feeding

All living cephalopods have a two-part
beak The beak, bill, or rostrum is an external anatomical structure found mostly in birds, but also in turtles, non-avian dinosaurs and a few mammals. A beak is used for pecking, grasping, and holding (in probing for food, eating, manipulating and ...
; most have a
radula The radula (; : radulae or radulas) is an anatomical structure used by mollusks for feeding, sometimes compared to a tongue. It is a minutely toothed, chitinous ribbon, which is typically used for scraping or cutting food before the food enters ...
, although it is reduced in most octopus and absent altogether in ''Spirula''. They feed by capturing prey with their tentacles, drawing it into their mouth and taking bites from it. They have a mixture of toxic digestive juices, some of which are manufactured by symbiotic algae, which they eject from their salivary glands onto their captured prey held in their mouths. These juices separate the flesh of their prey from the bone or shell. The salivary gland has a small tooth at its end which can be poked into an organism to digest it from within. The digestive gland itself is rather short. It has four elements, with food passing through the crop, stomach and caecum before entering the intestine. Most digestion, as well as the absorption of nutrients, occurs in the digestive gland, sometimes called the liver. Nutrients and waste materials are exchanged between the gut and the digestive gland through a pair of connections linking the gland to the junction of the stomach and caecum. Cells in the digestive gland directly release pigmented excretory chemicals into the lumen of the gut, which are then bound with mucus passed through the anus as long dark strings, ejected with the aid of exhaled water from the funnel. Cephalopods tend to concentrate ingested heavy metals in their body tissue. However, octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to be their "taste by touch" system.


Radula

The cephalopod radula consists of multiple symmetrical rows of up to nine teeth – thirteen in fossil classes. The organ is reduced or even vestigial in certain octopus species and is absent in '' Spirula''. The teeth may be homodont (i.e. similar in form across a row), heterodont (otherwise), or ctenodont (comb-like). Their height, width and number of cusps is variable between species. The pattern of teeth repeats, but each row may not be identical to the last; in the octopus, for instance, the sequence repeats every five rows. Cephalopod radulae are known from fossil deposits dating back to the Ordovician. They are usually preserved within the cephalopod's body chamber, commonly in conjunction with the mandibles; but this need not always be the case; many radulae are preserved in a range of settings in the Mason Creek. Radulae are usually difficult to detect, even when they are preserved in fossils, as the rock must weather and crack in exactly the right fashion to expose them; for instance, radulae have only been found in nine of the 43 ammonite genera, and they are rarer still in non-ammonoid forms: only three pre-Mesozoic species possess one.


Excretory system

Most cephalopods possess a single pair of large
nephridia The nephridium (: nephridia) is an invertebrate organ, found in pairs and performing a function similar to the vertebrate kidneys (which originated from the chordate nephridia). Nephridia remove metabolic wastes from an animal's body. Nephridia co ...
. Filtered
nitrogenous waste Metabolic wastes or excrements are substances left over from metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxic), and must therefore be excreted. This includes nitrogen compounds ...
is produced in the pericardial cavity of the branchial hearts, each of which is connected to a nephridium by a narrow canal. The canal delivers the excreta to a bladder-like renal sac, and also resorbs excess water from the filtrate. Several outgrowths of the lateral
vena cava In anatomy, the ''venae cavae'' (; ''vena cava'' ; ) are two large veins ( great vessels) that return deoxygenated blood from the body into the heart. In humans they are the superior vena cava and the inferior vena cava, and both empty into t ...
project into the renal sac, continuously inflating and deflating as the branchial hearts beat. This action helps to pump the secreted waste into the sacs, to be released into the mantle cavity through a pore. ''Nautilus'', unusually, possesses four nephridia, none of which are connected to the pericardial cavities. The incorporation of
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
is important for shell formation in terrestrial molluscs and other non-molluscan lineages. Because
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
(i.e., flesh) is a major constituent of the cephalopod diet, large amounts of
ammonium ion Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) molecular ion with the chemical formula or . It is formed by the addition of a proton (a hydrogen nucleus) to ammonia (). Ammonium ...
s are produced as waste. The main organs involved with the release of this excess ammonium are the gills. The rate of release is lowest in the shelled cephalopods ''
Nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
'' and '' Sepia'' as a result of their using
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
to fill their shells with gas to increase buoyancy. Other cephalopods use ammonium in a similar way, storing the ions (as
ammonium chloride Ammonium chloride is an inorganic chemical compound with the chemical formula , also written as . It is an ammonium salt of hydrogen chloride. It consists of ammonium cations and chloride anions . It is a white crystalline salt (chemistry), sal ...
) to reduce their overall density and increase buoyancy.


Reproduction and life cycle

Cephalopods are a diverse group of species, but share common life history traits, for example, they have a rapid growth rate and short life spans. Stearns (1992) suggested that in order to produce the largest possible number of viable offspring, spawning events depend on the ecological environmental factors of the organism. The majority of cephalopods do not provide parental care to their offspring, except, for example, octopus, which helps this organism increase the survival rate of their offspring. Marine species' life cycles are affected by various environmental conditions. The development of a cephalopod embryo can be greatly affected by temperature, oxygen saturation, pollution, light intensity, and salinity. These factors are important to the rate of embryonic development and the success of hatching of the embryos. Food availability also plays an important role in the reproductive cycle of cephalopods. A limitation of food influences the timing of spawning along with their function and growth. Spawning time and spawning vary among marine species; it's correlated with temperature, though cephalopods in shallow water spawn in cold months so that the offspring would hatch at warmer temperatures. Breeding can last from several days to a month.


Sexual maturity

Cephalopods that are sexually mature and of adult size begin spawning and reproducing. After the transfer of genetic material to the following generation, the adult cephalopods in most species then die. Sexual maturation in male and female cephalopods can be observed internally by the enlargement of gonads and accessory glands. Mating would be a poor indicator of sexual maturation in females; they can receive sperm when not fully reproductively mature and store them until they are ready to fertilize the eggs. Males are more aggressive in their pre-mating competition when in the presence of immature females than when competing for a sexually mature female. Most cephalopod males develop a hectocotylus, an arm tip which is capable of transferring their spermatozoa into the female mantle cavity. Though not all species use a hectocotylus; for example, the adult nautilus releases a spadix. Some male squids, mainly deep-water species, have instead evolved a penis longer than their own body length, the longest penis in any free-living animals. It is assumed these males simply attach a
spermatophore A spermatophore, from Ancient Greek σπέρμα (''spérma''), meaning "seed", and -φόρος (''-phóros''), meaning "bearing", or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especiall ...
anywhere on a female's body. An indication of sexual maturity of females is the development of brachial photophores to attract mates.


Fertilization

Cephalopods are not broadcast spawners. During the process of fertilization, the females use sperm provided by the male via external fertilization.
Internal fertilization Internal fertilization is the union of an egg and sperm cell during sexual reproduction inside the female body. Internal fertilization, unlike its counterpart, external fertilization, brings more control to the female with reproduction. For inte ...
is seen only in octopuses. The initiation of copulation begins when the male catches a female and wraps his arm around her, either in a "male to female neck" position or mouth to mouth position, depending on the species. The males then initiate the process of fertilization by contracting their mantle several times to release the spermatozoa. Cephalopods often mate several times, which influences males to mate longer with females that have previously, nearly tripling the number of contractions of the mantle. To ensure the fertilization of the eggs, female cephalopods release a sperm-attracting peptide through the gelatinous layers of the egg to direct the spermatozoa. Female cephalopods lay eggs in clutches; each egg is composed of a protective coat to ensure the safety of the developing embryo when released into the water column. Reproductive strategies differ between cephalopod species. In the giant Pacific octopus, large eggs are laid in a den; it will often take several days to lay all of them. Once the eggs are released and normally attached to a sheltered substrate, the female usually die shortly after, but octopuses and a few squids will look after their eggs afterwards. Others, like the Japanese flying squid, will spawn neutrally buoyant egg masses which will float at the interface between water layers of slightly different densities, or the female will swim around while carrying the eggs with her. Most species are
semelparous Semelparity and iteroparity are two contrasting reproductive strategies available to living organisms. A species is considered ''semelparous'' if it is characterized by a single reproduction, reproductive episode before death, and ''iteroparous ...
(only reproduce once before dying), the only known exceptions are the vampire squid, the lesser Pacific striped octopus and the
nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
, which are
iteroparous Semelparity and iteroparity are two contrasting reproductive strategies available to living organisms. A species is considered ''semelparous'' if it is characterized by a single reproduction, reproductive episode before death, and ''iteroparous ...
. In some species of cephalopods, egg clutches are anchored to substrates by a mucilaginous adhesive substance. These eggs are swelled with perivitelline fluid (PVF), a hypertonic fluid that prevents premature hatching. Fertilized egg clusters are neutrally buoyant depending on the depth that they were laid, but can also be found in substrates such as sand, a matrix of corals, or seaweed. Because these species do not provide parental care for their offspring, egg capsules can be injected with ink by the female in order to camouflage the embryos from predators.


Male–male competition

Most cephalopods engage in aggressive sex: a protein in the male capsule sheath stimulates this behavior. They also engage in male–male aggression, where larger males tend to win the interactions. When a female is near, the males charge one another continuously and flail their arms. If neither male backs away, the arms extend to the back, exposing the mouth, followed by the biting of arm tips. During mate competition males also participate in a technique called flushing. This technique is used by the second male attempting to mate with a female. Flushing removes spermatophores in the buccal cavity that was placed there by the first mate by forcing water into the cavity. Another behavior that males engage in is sneaker mating or mimicry – smaller males adjust their behavior to that of a female in order to reduce aggression. By using this technique, they are able to fertilize the eggs while the larger male is distracted by a different male. During this process, the sneaker males quickly insert drop-like sperm into the seminal receptacle.


Mate choice

Mate choice Mate choice is one of the primary mechanisms under which evolution can occur. It is characterized by a "selective response by animals to particular stimuli" which can be observed as behavior.Bateson, Paul Patrick Gordon. "Mate Choice." Mate Choi ...
is seen in cuttlefish species, where females prefer some males over others, though characteristics of the preferred males are unknown. A hypothesis states that females reject males by olfactory cues rather than visual cues. Several cephalopod species are polyandrous – accepting and storing multiple male spermatophores, which has been identified by DNA fingerprinting. Females are no longer receptive to mating attempts when holding their eggs in their arms. Females can store sperm in two places (1) the buccal cavity where recently mated males place their spermatophores, and (2) the internal sperm-storage receptacles where sperm packages from previous males are stored. Spermatophore storage results in sperm competition; which states that the female controls which mate fertilizes the eggs. In order to reduce this sort of competition, males develop agonistic behaviors like mate guarding and flushing. The ''Hapalochlaena lunulata'', or the blue-ringed octopus, readily mates with both males and females.


Sexual dimorphism

In a variety of marine organisms, it is seen that females are larger in size compared to the males in some closely related species. In some lineages, such as the blanket octopus, males become structurally smaller and smaller resembling a term, "dwarfism" dwarf males usually occurs at low densities. The blanket octopus male is an example of sexual-evolutionary dwarfism; females grow 10,000 to 40,000 times larger than the males and the sex ratio between males and females can be distinguished right after hatching of the eggs.


Embryology

Cephalopod eggs span a large range of sizes, from 1 to 30 mm in diameter. The fertilised ovum initially divides to produce a disc of germinal cells at one pole, with the
yolk Among animals which produce eggs, the yolk (; also known as the vitellus) is the nutrient-bearing portion of the egg whose primary function is to supply food for the development of the embryo. Some types of egg contain no yolk, for example bec ...
remaining at the opposite pole. The germinal disc grows to envelop and eventually absorb the yolk, forming the embryo. The tentacles and arms first appear at the hind part of the body, where the foot would be in other molluscs, and only later migrate towards the head. The funnel of cephalopods develops on the top of their head, whereas the mouth develops on the opposite surface. The early embryological stages are reminiscent of ancestral
gastropod Gastropods (), commonly known as slugs and snails, belong to a large Taxonomy (biology), taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (). This class comprises snails and slugs from saltwater, freshwater, and fro ...
s and extant
Monoplacophora Shell of Monoplacophora Monoplacophora , meaning "bearing one plate", is a polyphyletic class of molluscs with a cap-like shell, inhabiting deep sea environments. Extant representatives were not recognized as such until 1952; previously they wer ...
. The shells develop from the ectoderm as an organic framework which is subsequently mineralized. In ''Sepia'', which has an internal shell, the ectoderm forms an invagination whose pore is sealed off before this organic framework is deposited.


Development

The length of time before hatching is highly variable; smaller eggs in warmer waters are the fastest to hatch, and newborns can emerge after as little as a few days. Larger eggs in colder waters can develop for over a year before hatching. The process from spawning to hatching follows a similar trajectory in all species, the main variable being the amount of yolk available to the young and when it is absorbed by the embryo. Unlike most other molluscs, cephalopods do not have a morphologically distinct
larva A larva (; : larvae ) is a distinct juvenile form many animals undergo before metamorphosis into their next life stage. Animals with indirect development such as insects, some arachnids, amphibians, or cnidarians typically have a larval phase ...
l stage. Instead, the juveniles of coleoids are known as paralarvae. Paralarvae have been observed only in members of the Octopoda and Teuthida (which constitutes the modern definition of Coleoidea). In contrast, hatchling nautili are not referred to by a specific technical term, as they resemble miniatures of the adults. Neonate cephalopods quickly learn how to hunt, using encounters with prey to refine their strategies. Growth in juveniles is usually
allometric Allometry (Ancient Greek "other", "measurement") is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in ''On Growth and Form'' and by Juli ...
, whilst adult growth is isometric.


Evolution

The traditional view of cephalopod evolution holds that they evolved in the Late Cambrian from a monoplacophoran-like ancestor with a curved, tapering shell, which was closely related to the
gastropod Gastropods (), commonly known as slugs and snails, belong to a large Taxonomy (biology), taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (). This class comprises snails and slugs from saltwater, freshwater, and fro ...
s (snails). The similarity of the early shelled cephalopod ''
Plectronoceras ''Plectronoceras'' is the earliest known shelled cephalopod, dating to the Late Cambrian.siphuncle The siphuncle is a strand of biological tissue, tissue passing longitudinally through the mollusc shell, shell of a cephalopod mollusc. Only cephalopods with chambered shells have siphuncles, such as the extinct ammonites and belemnites, and the li ...
would have allowed the shells of these early forms to become gas-filled (thus buoyant) in order to support them and keep the shells upright while the animal crawled along the floor, and separated the true cephalopods from putative ancestors such as '' Knightoconus'', which lacked a siphuncle. Neutral or positive buoyancy (i.e. the ability to float) would have come later, followed by swimming in the Plectronocerida and eventually jet propulsion in more derived cephalopods. Possible early Cambrian remains have been found in the
Avalon Peninsula The Avalon Peninsula () is a large peninsula that makes up the southeast portion of the island of Newfoundland in Canada. It is in size. The peninsula is home to 270,348 people, about 52% of the province's population, according to the 2016 Ca ...
, matching genetic data for a pre-Cambrian origin. However, this specimen is later shown that is a chimerical fossil. In 2010, some researchers proposed that '' Nectocaris pteryx'' is the early cephalopod, which did not have a shell and appeared to possess jet propulsion in the manner of "derived" cephalopods, complicated the question of the order in which cephalopod features developed. However, most of other researchers do not agree that ''Nectocaris'' actually being a cephalopod or even mollusk. Early cephalopods were likely predators near the top of the food chain. After the late Cambrian extinction led to the disappearance of many radiodonts, predatory niches became available for other animals. During the Ordovician period, the primitive cephalopods underwent pulses of diversification to become diverse and dominant in the
Paleozoic The Paleozoic ( , , ; or Palaeozoic) Era is the first of three Era (geology), geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic (the last era of the Proterozoic Eon) and ends 251.9 Ma a ...
and
Mesozoic The Mesozoic Era is the Era (geology), era of Earth's Geologic time scale, geological history, lasting from about , comprising the Triassic, Jurassic and Cretaceous Period (geology), Periods. It is characterized by the dominance of archosaurian r ...
seas. In the Early Palaeozoic, their range was far more restricted than today; they were mainly constrained to sublittoral regions of shallow shelves of the low latitudes, and usually occurred in association with thrombolites. A more pelagic habit was gradually adopted as the Ordovician progressed. Deep-water cephalopods, whilst rare, have been found in the Lower Ordovician – but only in high-latitude waters. The mid-Ordovician saw the first cephalopods with septa strong enough to cope with the pressures associated with deeper water, and could inhabit depths greater than 100–200 m. The direction of shell coiling would prove to be crucial to the future success of the lineages; endogastric coiling would only permit large size to be attained with a straight shell, whereas exogastric coiling – initially rather rare – permitted the spirals familiar from the fossil record to develop, with their corresponding large size and diversity. (Endogastric means the shell is curved so as the ventral or lower side is longitudinally concave (abdomen in); exogastric means the shell is curved so as the ventral side is longitudinally convex (abdomen out) allowing the funnel to be pointed backward beneath the shell.) The ancestors of coleoids (including most modern cephalopods) and the ancestors of the modern nautilus, had diverged by the Floian Age of the Early Ordovician Period, over 470 million years ago. The Bactritida, a Devonian–Triassic group of orthocones, are widely held to be paraphyletic without the coleoids and ammonoids, that is, the latter groups arose from within the Bactritida. An increase in the diversity of the coleoids and ammonoids is observed around the start of the Devonian period and corresponds with a profound increase in fish diversity. This could represent the origin of the two derived groups. Unlike most modern cephalopods, most ancient varieties had protective shells. These shells at first were conical but later developed into curved nautiloid shapes seen in modern
nautilus A nautilus (; ) is any of the various species within the cephalopod family Nautilidae. This is the sole extant family of the superfamily Nautilaceae and the suborder Nautilina. It comprises nine living species in two genera, the type genus, ty ...
species. Competitive pressure from fish is thought to have forced the shelled forms into deeper water, which provided an evolutionary pressure towards shell loss and gave rise to the modern coleoids, a change which led to greater metabolic costs associated with the loss of buoyancy, but which allowed them to recolonize shallow waters. However, some of the straight-shelled
nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
s evolved into belemnites. The loss of the shell may also have resulted from evolutionary pressure to increase maneuverability, resulting in a more fish-like habit. There has been debate on the embryological origin of cephalopod appendages. Until the mid-20th century, the "Arms as Head" hypothesis was widely recognized. In this theory, the arms and tentacles of cephalopods look similar to the head appendages of gastropods, suggesting that they might be homologous structures. Cephalopod appendages surround the mouth, so logically they could be derived from embryonic head tissues. However, the "Arms as Foot" hypothesis, proposed by Adolf Naef in 1928, has increasingly been favoured; for example, fate mapping of limb buds in the
chambered nautilus The chambered nautilus (''Nautilus pompilius''), also called the pearly nautilus, is the best-known species of nautilus. The shell, when cut away, reveals a lining of lustrous nacre and displays a nearly perfect equiangular spiral, although it ...
indicates that limb buds originate from "foot" embryonic tissues.


Genetics

The sequencing of a full cephalopod genome has remained challenging to researchers due to the length and repetition of their DNA. The characteristics of cephalopod genomes were initially hypothesized to be the result of entire genome duplications. Following the full sequencing of a California two-spot octopus, the genome showed similar patterns to other marine invertebrates with significant additions to the genome assumed to be unique to cephalopods. No evidence of full genome duplication was found. Within the California two-spot octopus genome there are substantial replications of two gene families. Significantly, the expanded gene families were only previously known to exhibit replicative behaviour within vertebrates. The first gene family was identified as the protocadherins which are attributed to neuron development. Protocadherins function as cell adhesion molecules, essential for synaptic specificity. The mechanism for protocadherin gene family replication in vertebrates is attributed to complex splicing, or cutting and pasting, from a locus. Following the sequencing of the California two-spot octopus, researchers found that the protocadherin gene family in cephalopods has expanded in the genome due to tandem gene duplication. The different replication mechanisms for protocadherin genes indicate an independent evolution of protocadherin gene expansion in vertebrates and invertebrates. Analysis of individual cephalopod protocadherin genes indicate independent evolution between species of cephalopod. A species of shore squid ''
Doryteuthis pealeii The longfin inshore squid (''Doryteuthis pealeii'') is a species of squid of the family Loliginidae. Description This species of squid is often seen with a reddish hue, but like many types of squid can manipulate its color, varying from a deep ...
'' with expanded protocadherin gene families differ significantly from those of the California two-spot octopus suggesting gene expansion did not occur before
speciation Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within ...
within cephalopods. Despite different mechanisms for gene expansion, the two-spot octopus protocadherin genes were more similar to vertebrates than squid, suggesting a
convergent evolution Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last comm ...
mechanism. The second gene family known as are small proteins that function as zinc transcription factors. are understood to moderate DNA, RNA and protein functions within the cell. The sequenced California two spot octopus genome also showed a significant presence of
transposable element A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome. The discovery of mobile genetic elements earned Barbara McClinto ...
s as well as transposon expression. Although the role of transposable elements in marine vertebrates is still relatively unknown, significant expression of transposons in nervous system tissues have been observed. In a study conducted on vertebrates, the expression of transposons during development in the fruitfly ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (an insect of the Order (biology), order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly" ...
'' activated genomic diversity between neurons. This diversity has been linked to increased memory and learning in mammals. The connection between transposons and increased neuron capability may provide insight into the observed intelligence, memory and function of cephalopods. Using long-read sequencing, researchers have decoded the cephalopod genomes and discovered they have been churned and scrambled. The genes were compared to those of thousands of other species and while blocks of three or more genes co-occurred between squid and octopus, the blocks of genes were not found together in any other animals'. Many of the groupings were in the nervous tissue, suggesting the course they adapted their intelligence.


Phylogeny

The approximate consensus of extant cephalopod phylogeny, after Whalen & Landman (2022), is shown in the
cladogram A cladogram (from Greek language, Greek ''clados'' "branch" and ''gramma'' "character") is a diagram used in cladistics to show relations among organisms. A cladogram is not, however, an Phylogenetic tree, evolutionary tree because it does not s ...
. Mineralized taxa are in bold. The internal phylogeny of the cephalopods is difficult to constrain; many molecular techniques have been adopted, but the results produced are conflicting. ''Nautilus'' tends to be considered an outgroup, with '' Vampyroteuthis'' forming an outgroup to other squid; however in one analysis the nautiloids, octopus and teuthids plot as a polytomy. Some molecular phylogenies do not recover the mineralized coleoids (''Spirula'', ''Sepia'', and ''Metasepia'') as a clade; however, others do recover this more parsimonious-seeming clade, with ''Spirula'' as a sister group to ''Sepia'' and ''Metasepia'' in a clade that had probably diverged before the end of the Triassic. Molecular estimates for clade divergence vary. One 'statistically robust' estimate has ''Nautilus'' diverging from ''Octopus'' at .


Taxonomy

The classification presented here, for recent cephalopods, follows largely fro
Current Classification of Recent Cephalopoda
(May 2001), for fossil cephalopods takes from Arkell et al. 1957, Teichert and Moore 1964, Teichert 1988, and others. The three subclasses are traditional, corresponding to the three orders of cephalopods recognized by Bather. Class Cephalopoda († indicates
extinct Extinction is the termination of an organism by the death of its Endling, last member. A taxon may become Functional extinction, functionally extinct before the death of its last member if it loses the capacity to Reproduction, reproduce and ...
groups) * Subclass
Nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
ea: Fundamental ectocochliate cephalopods that provided the source for the Ammonoidea and Coleoidea. ** Order † Plectronocerida: the ancestral cephalopods from the
Cambrian The Cambrian ( ) is the first geological period of the Paleozoic Era, and the Phanerozoic Eon. The Cambrian lasted 51.95 million years from the end of the preceding Ediacaran period 538.8 Ma (million years ago) to the beginning of the Ordov ...
Period ** Order †
Ellesmerocerida The Ellesmerocerida is an extinct order of primitive cephalopods belonging to the subclass Nautiloidea with a widespread distribution that lived during the Late Cambrian and Ordovician. Morphology The Ellesmerocerida are characterized by shell ...
() ** Order † Endocerida () ** Order †
Actinocerida The Actinocerida are an order of generally straight, medium to large cephalopods that lived during the early and middle Paleozoic, distinguished by a siphuncle composed of expanded segments that extend into the adjacent chambers, in which depo ...
() ** Order † Discosorida () ** Order † Pseudorthocerida () ** Order †
Tarphycerida The Tarphycerida were the first of the coiled cephalopods, found in marine sediments from the Lower Ordovician (middle and upper Canad) to the Middle Devonian. Some, such as '' Aphetoceras'' and '' Estonioceras'', are loosely coiled and gyroconi ...
() ** Order † Oncocerida () ** Order Nautilida (extant; 410.5 Ma to present) ** Order † Orthocerida () ** Order † Ascocerida () ** Order † Bactritida () * Subclass †
Ammonoidea Ammonoids are extinct, (typically) coiled-shelled cephalopods comprising the subclass Ammonoidea. They are more closely related to living octopuses, squid, and cuttlefish (which comprise the clade Coleoidea) than they are to nautiluses (family N ...
: ammonites () ** Order † Goniatitida () ** Order † Ceratitida () ** Order †
Ammonitida Ammonitida, or true ammonites, are an order of Ammonoidea, ammonoid cephalopods that lived from the Jurassic through Paleocene time periods, commonly with intricate ammonitic sutures. Ammonitida is divided into four suborders, the Phylloceratina ...
() * Subclass
Coleoidea Coleoidea or Dibranchiata is one of the two subclasses of cephalopod molluscs containing all the various taxa popularly thought of as "soft-bodied" or "shell-less" (i.e. octopus, squid and cuttlefish). Unlike its extant sister group Nauti ...
(410.0 Ma-Rec) ** Cohort † Belemnoidea: Belemnites and kin *** Genus † '' Jeletzkya'' *** Order † Aulacocerida () *** Order † Phragmoteuthida () *** Order † Hematitida () *** Order † Belemnitida () *** Genus † '' Belemnoteuthis'' () ** Cohort Neocoleoidea *** Superorder Decapodiformes (also known as Decabrachia or Decembranchiata) **** Order Spirulida: ram's horn squid **** Order Sepiida: cuttlefish **** Order Sepiolida: pygmy, bobtail and bottletail squid **** Order Idiosepida **** Order Oegopsida: neritic squid **** Order Myopsida: coastal squid **** Order Bathyteuthida *** Superorder Octopodiformes (also known as Vampyropoda) **** Family † Trachyteuthididae **** Order Vampyromorphida: vampire squid **** Order Octopoda: octopus *** Superorder † Palaeoteuthomorpha **** Order † Boletzkyida Other classifications differ, primarily in how the various
decapod The Decapoda or decapods, from Ancient Greek δεκάς (''dekás''), meaning "ten", and πούς (''poús''), meaning "foot", is a large order of crustaceans within the class Malacostraca, and includes crabs, lobsters, crayfish, shrimp, and p ...
orders are related, and whether they should be orders or families.


Suprafamilial classification of the Treatise

This is the older classification that combines those found in parts K and L of the ''Treatise on Invertebrate Paleontology'', which forms the basis for and is retained in large part by classifications that have come later. Nautiloids in general (Teichert and Moore, 1964) sequence as given. : Subclass † Endoceratoidea. Not used by Flower, e.g. Flower and Kummel 1950, interjocerids included in the Endocerida. :: Order † Endocerida :: Order † Intejocerida : Subclass † Actinoceratoidea Not used by Flower, ibid :: Order †
Actinocerida The Actinocerida are an order of generally straight, medium to large cephalopods that lived during the early and middle Paleozoic, distinguished by a siphuncle composed of expanded segments that extend into the adjacent chambers, in which depo ...
: Subclass
Nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
ea Nautiloidea in the restricted sense. :: Order †
Ellesmerocerida The Ellesmerocerida is an extinct order of primitive cephalopods belonging to the subclass Nautiloidea with a widespread distribution that lived during the Late Cambrian and Ordovician. Morphology The Ellesmerocerida are characterized by shell ...
Plectronocerida subsequently split off as separate order. :: Order † Orthocerida Includes orthocerids and pseudorthocerids :: Order † Ascocerida :: Order † Oncocerida :: Order † Discosorida :: Order †
Tarphycerida The Tarphycerida were the first of the coiled cephalopods, found in marine sediments from the Lower Ordovician (middle and upper Canad) to the Middle Devonian. Some, such as '' Aphetoceras'' and '' Estonioceras'', are loosely coiled and gyroconi ...
:: Order † Barrandeocerida A polyphyletic group now included in the Tarphycerida :: Order Nautilida : Subclass †
Bactritoidea The Bactritida are a small order of more or less straight-shelled (orthoconic) cephalopods that first appeared during the Emsian stage of the Devonian period (407 million years ago) with questionable origins in the Pragian stage before 409 mill ...
:: Order † Bactritida Paleozoic Ammonoidea (Miller, Furnish and Schindewolf, 1957) :: Suborder † Anarcestina :: Suborder † Clymeniina :: Suborder † Goniatitina :: Suborder † Prolecanitina Mesozoic Ammonoidea (Arkel et al., 1957) :: Suborder † Ceratitina :: Suborder †
Phylloceratina The Phylloceratina comprise a suborder (biology), suborder of Ammonoidea, ammonoid cephalopods, belonging to the Ammonitida, whose range extends from the Lower Triassic to the Upper Cretaceous. Shells of the Phylloceratina are generally smooth w ...
:: Suborder † Lytoceratina :: Suborder † Ammonitina Subsequent revisions include the establishment of three Upper Cambrian orders, the Plectronocerida, Protactinocerida, and Yanhecerida; separation of the pseudorthocerids as the Pseudorthocerida, and elevating orthoceratid as the Subclass Orthoceratoidea.


Shevyrev classification

Shevyrev (2005) suggested a division into eight subclasses, mostly comprising the more diverse and numerous fossil forms, although this classification has been criticized as arbitrary, lacking evidence, and based on misinterpretations of other papers. Class Cephalopoda * Subclass † Ellesmeroceratoidea **Order † Plectronocerida () **Order † Protactinocerida **Order † Yanhecerida **Order †
Ellesmerocerida The Ellesmerocerida is an extinct order of primitive cephalopods belonging to the subclass Nautiloidea with a widespread distribution that lived during the Late Cambrian and Ordovician. Morphology The Ellesmerocerida are characterized by shell ...
() * Subclass † Endoceratoidea () **Order † Endocerida () **Order † Intejocerida () * Subclass † Actinoceratoidea ** Order †
Actinocerida The Actinocerida are an order of generally straight, medium to large cephalopods that lived during the early and middle Paleozoic, distinguished by a siphuncle composed of expanded segments that extend into the adjacent chambers, in which depo ...
() * Subclass
Nautiloid Nautiloids are a group of cephalopods (Mollusca) which originated in the Late Cambrian and are represented today by the living ''Nautilus'' and ''Allonautilus''. Fossil nautiloids are diverse and species rich, with over 2,500 recorded species. Th ...
ea (490.0 Ma- Rec) ** Order † Basslerocerida () ** Order †
Tarphycerida The Tarphycerida were the first of the coiled cephalopods, found in marine sediments from the Lower Ordovician (middle and upper Canad) to the Middle Devonian. Some, such as '' Aphetoceras'' and '' Estonioceras'', are loosely coiled and gyroconi ...
() ** Order † Lituitida () ** Order † Discosorida () ** Order † Oncocerida () ** Order Nautilida (410.5 Ma-Rec) * Subclass †
Orthoceratoidea Orthoceratoidea, from Ancient Greek ὀρθός (''orthós''), meaning "straight", and κέρας (''kéras''), meaning "horn", is a major subclass of nautiloid cephalopods. Members of this subclass usually have orthoconic (straight) to slightly ...
() ** Order † Orthocerida () ** Order † Ascocerida () ** Order † Dissidocerida () ** Order † Bajkalocerida * Subclass †
Bactritoidea The Bactritida are a small order of more or less straight-shelled (orthoconic) cephalopods that first appeared during the Emsian stage of the Devonian period (407 million years ago) with questionable origins in the Pragian stage before 409 mill ...
() * Subclass †
Ammonoidea Ammonoids are extinct, (typically) coiled-shelled cephalopods comprising the subclass Ammonoidea. They are more closely related to living octopuses, squid, and cuttlefish (which comprise the clade Coleoidea) than they are to nautiluses (family N ...
() * Subclass
Coleoidea Coleoidea or Dibranchiata is one of the two subclasses of cephalopod molluscs containing all the various taxa popularly thought of as "soft-bodied" or "shell-less" (i.e. octopus, squid and cuttlefish). Unlike its extant sister group Nauti ...
(410.0 Ma-rec)


Cladistic classification

Another recent system divides all cephalopods into two
clade In biology, a clade (), also known as a Monophyly, monophyletic group or natural group, is a group of organisms that is composed of a common ancestor and all of its descendants. Clades are the fundamental unit of cladistics, a modern approach t ...
s. One includes nautilus and most fossil nautiloids. The other clade ( Neocephalopoda or Angusteradulata) is closer to modern coleoids, and includes belemnoids, ammonoids, and many orthocerid families. There are also stem group cephalopods of the traditional
Ellesmerocerida The Ellesmerocerida is an extinct order of primitive cephalopods belonging to the subclass Nautiloidea with a widespread distribution that lived during the Late Cambrian and Ordovician. Morphology The Ellesmerocerida are characterized by shell ...
that belong to neither clade. The coleoids, despite some doubts, appear from molecular data to be monophyletic.


In culture

Ancient seafaring people were aware of cephalopods, as evidenced by such artworks as a stone carving found in the archaeological recovery from Bronze Age
Minoan Crete The Minoan civilization was a Bronze Age culture which was centered on the island of Crete. Known for its monumental architecture and energetic art, it is often regarded as the first civilization in Europe. The ruins of the Minoan palaces at K ...
at
Knossos Knossos (; , ; Linear B: ''Ko-no-so'') is a Bronze Age archaeological site in Crete. The site was a major centre of the Minoan civilization and is known for its association with the Greek myth of Theseus and the minotaur. It is located on th ...
(1900 – 1100 BC), which has a depiction of a fisherman carrying an octopus. The terrifyingly powerful
Gorgon The Gorgons ( ; ), in Greek mythology, are three monstrous sisters, Stheno, Euryale, and Medusa, said to be the daughters of Phorcys and Ceto. They lived near their sisters the Graeae, and were able to turn anyone who looked at them to sto ...
of
Greek mythology Greek mythology is the body of myths originally told by the Ancient Greece, ancient Greeks, and a genre of ancient Greek folklore, today absorbed alongside Roman mythology into the broader designation of classical mythology. These stories conc ...
may have been inspired by the octopus or squid, the octopus's body representing the severed head of
Medusa In Greek mythology, Medusa (; ), also called Gorgo () or the Gorgon, was one of the three Gorgons. Medusa is generally described as a woman with living snakes in place of hair; her appearance was so hideous that anyone who looked upon her wa ...
, the beak as the protruding tongue and fangs, and its tentacles as the snakes. The kraken is a legendary sea monster of giant proportions said to dwell off the coasts of Norway and Greenland, usually portrayed in art as a giant cephalopod attacking ships.
Linnaeus Carl Linnaeus (23 May 1707 – 10 January 1778), also known after ennoblement in 1761 as Carl von Linné,#Blunt, Blunt (2004), p. 171. was a Swedish biologist and physician who formalised binomial nomenclature, the modern system of naming o ...
included it in the first edition of his 1735 ''
Systema Naturae ' (originally in Latin written ' with the Orthographic ligature, ligature æ) is one of the major works of the Sweden, Swedish botanist, zoologist and physician Carl Linnaeus (1707–1778) and introduced the Linnaean taxonomy. Although the syste ...
''. In a Hawaiian
creation myth A creation myth or cosmogonic myth is a type of cosmogony, a symbolic narrative of how the world began and how people first came to inhabit it., "Creation myths are symbolic stories describing how the universe and its inhabitants came to be. Cre ...
that says the present cosmos is the last of a series which arose in stages from the ruins of the previous universe, the octopus is the lone survivor of the previous, alien universe. The Akkorokamui is a gigantic tentacled
monster A monster is a type of imaginary or fictional creature found in literature, folklore, mythology, fiction and religion. They are very often depicted as dangerous and aggressive, with a strange or grotesque appearance that causes Anxiety, terror ...
from Ainu folklore. A battle with an octopus plays a significant role in
Victor Hugo Victor-Marie Hugo, vicomte Hugo (; 26 February 1802 – 22 May 1885) was a French Romanticism, Romantic author, poet, essayist, playwright, journalist, human rights activist and politician. His most famous works are the novels ''The Hunchbac ...
's book ''Travailleurs de la mer'' ('' Toilers of the Sea''), relating to his time in exile on
Guernsey Guernsey ( ; Guernésiais: ''Guernési''; ) is the second-largest island in the Channel Islands, located west of the Cotentin Peninsula, Normandy. It is the largest island in the Bailiwick of Guernsey, which includes five other inhabited isl ...
.
Ian Fleming Ian Lancaster Fleming (28 May 1908 – 12 August 1964) was a British writer, best known for his postwar ''James Bond'' series of spy novels. Fleming came from a wealthy family connected to the merchant bank Robert Fleming & Co., and his ...
's 1966 short story collection ''
Octopussy and The Living Daylights ''Octopussy and The Living Daylights'' (sometimes published as ''Octopussy'') is the fourteenth and final James Bond book written by Ian Fleming. The book is a collection of short stories published in the United Kingdom by Jonathan Cape on 23 ...
'', and the 1983 ''James Bond'' film were partly inspired by Hugo's book. Japanese erotic art, '' shunga'', includes
ukiyo-e is a genre of Japanese art that flourished from the 17th through 19th centuries. Its artists produced woodblock printing, woodblock prints and Nikuhitsu-ga, paintings of such subjects as female beauties; kabuki actors and sumo wrestlers; scenes ...
woodblock prints such as Katsushika Hokusai's 1814 print ''Tako to ama'' ( The Dream of the Fisherman's Wife), in which an ama diver is sexually intertwined with a large and a small octopus. The print is a forerunner of tentacle erotica. Its many arms that emanate from a common center means that the octopus is sometimes used to symbolize a powerful and manipulative organization.


See also

*
Cephalopod size Cephalopods, which include squids and octopuses, vary enormously in size. The smallest are only about long and weigh less than at maturity, while the giant squid can exceed in length and the colossal squid weighs close to half a tonne (), makin ...
*
Cephalopod eye Cephalopods, as active marine predators, possess sensory organs specialized for use in aquatic conditions.Budelmann BU. "Cephalopod sense organs, nerves and the brain: Adaptations for high performance and life style." Marine and Freshwater Behav ...
* Cephalopod intelligence * Pain in cephalopods * Kraken *
List of nautiloids This list of nautiloids is a comprehensive listing of all Genus, genera that have ever been included in the subclass Nautiloidea, excluding purely vernacular terms. The list includes all commonly accepted genera, but also genera that are now consid ...
* List of ammonites


References


Further reading

* A comprehensive overview of Paleozoic cephalopods. * * Felley, J., Vecchione, M., Roper, C. F. E., Sweeney, M. & Christensen, T., 2001–2003: ''Current Classification of Recent Cephalopoda''
National Museum of Natural History: Department of Systematic Biology: Invertebrate Zoology: Cephalopods
* * N. Joan Abbott, Roddy Williamson, Linda Maddock. ''Cephalopod Neurobiology''. Oxford University Press, 1995. * Marion Nixon & John Z. Young. ''The brains and lives of Cephalopods''. Oxford University Press, 2003. * Hanlon, Roger T. & John B. Messenger.
Cephalopod Behaviour
'. Cambridge University Press, 1996. * Martin Stevens & Sami Merilaita. ''Animal camouflage: mechanisms and function''. Cambridge University Press, 2011. *


External links


TONMO.COM – The Octopus News Magazine Online – cephalopod articles and discussionScientific American: Can a Squid Fly Out of the Water?Roger Hanlon's Seminar: "Rapid Adaptive Camouflage and Signaling in Cephalopods"
{{Authority control Marine molluscs Extant Cambrian first appearances Taxa named by Georges Cuvier Conchifera