HOME

TheInfoList



OR:

Branched flow refers to a phenomenon in
wave In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
dynamics, that produces a tree-like pattern involving successive mostly forward scattering events by smooth obstacles deflecting traveling rays or waves. Sudden and significant momentum or wavevector changes are absent, but accumulated small changes can lead to large momentum changes. The path of a single ray is less important than the environs around a ray, which rotate, compress, and stretch around in an area preserving way. Even more revealing are groups, or
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s of neighboring rays extending over significant zones. Starting rays out from a point but varying their direction over a range, one to the next, or from different points along a line all with the same initial directions are examples of a manifold. Waves have analogous launching conditions, such as a point source spraying in many directions, or an extended plane wave heading on one direction. The ray bending or refraction leads to characteristic structure in
phase space The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
and nonuniform distributions in coordinate space that look somehow universal and resemble branches in trees or stream beds. The branches taken on non-obvious paths through the refracting landscape that are indirect and nonlocal results of terrain already traversed. For a given refracting landscape, the branches will look completely different depending on the initial manifold.


Examples


Two-dimensional electron gas

Branched flow was first identified in experiments with a
two-dimensional electron gas A two-dimensional electron gas (2DEG) is a scientific model in solid-state physics. It is an Fermi gas, electron gas that is free to move in two dimensions, but tightly confined in the third. This tight confinement leads to quantized energy levels ...
. Electrons flowing from a
quantum point contact A quantum point contact (QPC) is a narrow constriction between two wide electrically conducting regions, of a width comparable to the electronic wavelength (nano- to micrometer). The importance of QPC lies in the fact that they prove quantisation o ...
were scanned using a
scanning probe microscope Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging ...
. Instead of usual diffraction patterns, the electrons flowed forming branching strands that persisted for several correlation lengths of the background potential.


Ocean dynamics

Focusing of random waves in the ocean can also lead to branched flow. The fluctuation in the depth of the ocean floor can be described as a random potential. A tsunami wave propagating in such medium will form branches which carry huge energy densities over long distances. This mechanism may also explain some statistical discrepancies in the occurrence of freak waves.


Light propagation

Given the wave nature of light, its propagation in random media can produce branched flow too. Experiments with laser beams in soap bubbles have shown this effect, which has also been proposed to control light focusing in a disordered medium.


Flexural waves in elastic plates

Flexural waves travelling in elastic plates also produce branched flows. Disorder, in this case, appears in the form of inhomogeneous
flexural rigidity Flexural rigidity is defined as the force couple required to bend a fixed non- rigid structure by one unit of curvature, or as the resistance offered by a structure while undergoing bending. Flexural rigidity of a beam Although the moment M(x) ...
.


Other examples

Other examples where branched flow has been proposed to happen include microwave radiation of pulsars refracted by interstellar clouds, the Zeldovitch model for the large structure of the universe and electron-phonon interaction in metals.


Dynamics: Kick and drift map

The dynamical mechanism that originates the branch formation can be understood by means of the kick and drift map, an area preserving map defined by: \vec_=\vec_n- \nabla V, _ \vec_=\vec_n + \vec_ where n accounts for the discrete time, x and p are position and momentum respectively, and V is the potential. The equation for the momentum is called the “kick” stage, whereas the equation for the position is the “drift”. Given an initial manifold in phase space, it can be iterated under the action of the kick and drift map. Typically, the manifold stretches and folds (although keeping its total area constant) forming cusps or caustics and stable regions. These regions of phases space with high concentration of trajectories are precisely the branches.


Scaling properties of branched flow in random potentials

When plane waves or parallel trajectories propagate through a weak random medium, several caustics can arise at more or less regularly ordered positions. Taking the direction perpendicular to the flow, the distance separating the caustics is determined by the correlation length of the potential d. Another characteristic length is the distance L downstream where the first generation of caustics appear. Taking into account the energy of the trajectories E and the height of the potential ɛ< that the following relation holds \frac = \left(\frac\right)^.


See also

* Ballistic conduction *
Caustic (optics) In optics, a caustic or caustic network is the Envelope (mathematics), envelope of Ray (optics), light rays which have been Reflection (physics), reflected or refraction, refracted by a curved surface or object, or the Projection (mathematics) ...
* Quantum chaos *
Rogue wave A rogue wave is an abnormally large ocean wave. Rogue wave may also refer to: * Optical rogue waves, are rare pulses of light analogous to rogue or freak ocean waves. * Rogue Wave Software, a software company * Rogue Wave (band), an American in ...
*
Semiclassical physics In physics, semiclassical refers to a theory in which one part of a system is described quantum mechanically, whereas the other is treated classically. For example, external fields will be constant, or when changing will be classically describ ...
*
Wave propagation In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. '' Periodic waves'' oscillate repeatedly about an equilibrium (resting) value at some f ...


References

{{Reflist


External links


Video: The laser show in a soap bubble (Observation of branched flow of light)
Wave mechanics Dynamics (mechanics)