History
In 1899, Henri Tissier, a French pediatrician at the Pasteur Institute in Paris, isolated a bacterium characterised by a Y-shaped morphology ("bifid") in the intestinal microbiota of breast-fed infants and named it "bifidus". In 1907, Élie Metchnikoff, deputy director at the Pasteur Institute, propounded the theory that lactic acid bacteria are beneficial to human health. Metchnikoff observed that theMetabolism
The genus ''Bifidobacterium'' possesses a unique fructose-6-phosphate phosphoketolase pathway employed to ferment carbohydrates. Much metabolic research on bifidobacteria has focused on oligosaccharide metabolism, as these carbohydrates are available in their otherwise nutrient-limited habitats. Infant-associated bifidobacterial phylotypes appear to have evolved the ability to ferment milk oligosaccharides, whereas adult-associated species use plant oligosaccharides, consistent with what they encounter in their respective environments. As breast-fed infants often harbor bifidobacteria-dominated gut consortia, numerous applications attempt to mimic the bifidogenic properties of milk oligosaccharides. These are broadly classified as plant-derivedResponse to oxygen
The sensitivity of members of the genus ''Bifidobacterium'' to O2 generally limits probiotic activity to anaerobic habitats. Recent research has reported that some ''Bifidobacterium'' strains exhibit various types of oxic growth. Low concentrations of O2 and CO2 can have a stimulatory effect on the growth of these ''Bifidobacterium'' strains. Based on the growth profiles under different O2 concentrations, the ''Bifidobacterium'' species were classified into four classes: O2-hypersensitive, O2-sensitive, O2-tolerant, and microaerophilic. The primary factor responsible for aerobic growth inhibition is proposed to be the production of hydrogen peroxide (H2O2) in the growth medium. A H2O2-forming NADH oxidase was purified from O2-sensitive ''Bifidobacterium bifidum'' and was identified as a ''b''-type dihydroorotate dehydrogenase. The kinetic parameters suggested that the enzyme could be involved in H2O2 production in highly aerated environments.Genomes
Members of the genus ''Bifidobacterium'' have genome sizes ranging from 1.73 (''Bifidobacterium indicum'') to 3.25 Mb (''Bifidobacterium biavatii''), corresponding to 1,352 and 2,557 predicted protein-encoding open reading frames, respectively. Functional classification of ''Bifidobacterium'' genes, including the pan-genome of this genus, revealed that 13.7% of the identified bifidobacterial genes encode enzymes involved in carbohydrate metabolism.Clinical uses
Adding ''Bifidobacterium'' as a probiotic to conventional treatment of ulcerative colitis has been shown to be associated with improved rates of remission and improved maintenance of remission. Some ''Bifidobacterium'' strains are considered as important probiotics and used in the food industry. Different species and/or strains of bifidobacteria may exert a range of beneficial health effects, including the regulation of intestinal microbialBifidobacteria and the infant gut
The human infant gut is relatively sterile up until birth, where it takes up bacteria from its surrounding environment and its mother. The microbiota that makes up the infant gut differs from the adult gut. An infant reaches the adult stage of their microbiome at around three years of age, when their microbiome diversity increases, stabilizes, and the infant switches over to solid foods. Breast-fed infants are colonized earlier by ''Bifidobacterium'' when compared to babies that are primarily formula-fed. ''Bifidobacterium'' is the most common bacteria in the infant gut microbiome. There is more variability in genotypes over time in infants, making them less stable compared to the adult ''Bifidobacterium''. Infants and children under three years old show low diversity in microbiome bacteria, but more diversity between individuals when compared to adults. Reduction of ''Bifidobacterium'' and increase in diversity of the infant gut microbiome occurs with less breast-milk intake and increase of solid food intake. Mammalian milk all contain oligosaccharides showing natural selection . Human milk oligosaccharides are not digested by enzymes and remain whole through the digestive tract before being broken down in the colon by microbiota. ''Bifidobacterium'' species genomes of '' B. longum, B. bifidum, B. breve'' contain genes that can hydrolyze some of the human milk oligosaccharides and these are found in higher numbers in infants that are breast-fed. Glycans that are produced by the humans are converted into food and energy for the ''B. bifidum.'' showing an example of coevolution.Species
The genus ''Bifidobacterium'' comprises the following species: * '' B. actinocoloniiforme'' Killer et al. 2011 * '' B. adolescentis'' Reuter 1963 (Approved Lists 1980) * '' B. aemilianum'' Alberoni et al. 2019 * '' B. aerophilum'' Michelini et al. 2017 * '' B. aesculapii'' Modesto et al. 2014 * '' B. amazonense'' Lugli et al. 2021 * '' B. angulatum'' Scardovi and Crociani 1974 (Approved Lists 1980) * '' B. animalis'' (Mitsuoka 1969) Scardovi and Trovatelli 1974 (Approved Lists 1980) * '' B. anseris'' Lugli et al. 2018 * '' B. apousia'' Chen et al. 2022 * '' B. apri'' Pechar et al. 2017 * '' B. aquikefiri'' Laureys et al. 2016 * '' B. asteroides'' Scardovi and Trovatelli 1969 (Approved Lists 1980) * '' B. avesanii'' Michelini et al. 2019 * '' B. biavatii'' Endo et al. 2012 * '' B. bifidum'' (Tissier 1900) Orla-Jensen 1924 (Approved Lists 1980) * '' B. bohemicum'' Killer et al. 2011 * '' B. bombi'' Killer et al. 2009 * '' B. boum'' Scardovi et al. 1979 (Approved Lists 1980) * '' B. breve'' Reuter 1963 (Approved Lists 1980) * '' B. callimiconis'' Duranti et al. 2019 * '' B. callitrichidarum'' Modesto et al. 2018 * '' B. callitrichos'' Endo et al. 2012 * '' B. canis'' Neuzil-Bunesova et al. 2020 * '' B. castoris'' Duranti et al. 2019 * '' B. catenulatum'' Scardovi and Crociani 1974 (Approved Lists 1980) * '' B. catulorum'' Modesto et al. 2018 * '' B. cebidarum'' Duranti et al. 2020 * '' B. choerinum'' Scardovi et al. 1979 (Approved Lists 1980) * '' B.choladohabitans '' Chen et al. 2022 * '' B. choloepi'' Modesto et al. 2020 * '' B. colobi'' Lugli et al. 2021 * '' B. commune'' Praet et al. 2015 * '' B. criceti'' Lugli et al. 2018 * "'' B. crudilactis''" Delcenserie et al. 2007 * '' B.cuniculi '' Scardovi et al. 1979 (Approved Lists 1980) * '' B. dentium'' Scardovi and Crociani 1974 (Approved Lists 1980) * '' B. dolichotidis'' Duranti et al. 2019 * "'' B. eriksonii''" Cato et al. 1970 * '' B. erythrocebi'' Neuzil-Bunesova et al. 2021 * '' B. eulemuris'' Michelini et al. 2016 * '' B. faecale'' Choi et al. 2014 * '' B. felsineum'' Modesto et al. 2020 * '' B. gallicum'' Lauer 1990 * '' B. gallinarum'' Watabe et al. 1983 * '' B. globosum'' (ex Scardovi et al. 1969) Biavati et al. 1982 * '' B. goeldii'' Duranti et al. 2019 * '' B. hapali'' Michelini et al. 2016 * '' B. '' Lugli et al. 2018 * '' B. indicum'' Scardovi and Trovatelli 1969 (Approved Lists 1980) * '' B. italicum'' Lugli et al. 2018 * '' B. jacchi'' Modesto et al. 2019 * '' B. lemurum'' Modesto et al. 2015 * '' B. leontopitheci'' Duranti et al. 2020 * '' B. longum'' Reuter 1963 (Approved Lists 1980) * '' B. magnum'' Scardovi and Zani 1974 (Approved Lists 1980) * '' B.margollesii '' Lugli et al. 2018 * '' B. merycicum'' Biavati and Mattarelli 1991 * '' B. miconis'' Lugli et al. 2021 * '' B. miconisargentati'' Lugli et al. 2021 * '' B. minimum'' Biavati et al. 1982 * '' B. mongoliense'' Watanabe et al. 2009 * '' B. moraviense'' Neuzil-Bunesova et al. 2021 * '' B. moukalabense'' Tsuchida et al. 2014 * '' B. myosotis'' Michelini et al. 2016 * '' B. oedipodis'' Neuzil-Bunesova et al. 2021 * '' B. olomucense'' Neuzil-Bunesova et al. 2021 * '' B. panos'' Neuzil-Bunesova et al. 2021 * '' B. parmae'' Lugli et al. 2018 * "'' B. platyrrhinorum''" Modesto et al. 2020 * '' B. pluvialisilvae'' Lugli et al. 2021 * '' B. polysaccharolyticum'' Chen et al. 2022 * '' B. pongonis'' Lugli et al. 2021 * '' B. porcinum'' (Zhu et al. 2003) Nouioui et al. 2018 * '' B. primatium'' Modesto et al. 2020 * '' B. pseudocatenulatum'' Scardovi et al. 1979 (Approved Lists 1980) * '' B. pseudolongum'' Mitsuoka 1969 (Approved Lists 1980) * '' B. psychraerophilum'' Simpson et al. 2004 * '' B. pullorum'' Trovatelli et al. 1974 (Approved Lists 1980) * '' B. ramosum'' Michelini et al. 2017 * '' B. reuteri'' Endo et al. 2012 * '' B. rousetti'' Modesto et al. 2021 * "'' B. ruminale''" Scardovi et al. 1969 * '' B. ruminantium'' Biavati and Mattarelli 1991 * '' B. saguini'' Endo et al. 2012 * '' B. saguinibicoloris'' Lugli et al. 2021 * "'' B. saimiriisciurei''" Modesto et al. 2020 * '' B. samirii'' Duranti et al. 2019 * '' B. santillanense'' Lugli et al. 2021 * '' B. scaligerum'' Modesto et al. 2020 * '' B. scardovii'' Hoyles et al. 2002 * '' B. simiarum'' Modesto et al. 2020 * '' B. simiiventris'' Lugli et al. 2021 * '' B. stellenboschense'' Endo et al. 2012 * '' B. subtile'' Biavati et al. 1982 * '' B. thermacidophilum'' Dong et al. 2000 * '' B. thermophilum'' corrig. Mitsuoka 1969 (Approved Lists 1980) * '' B. tibiigranuli'' Eckel et al. 2020 * '' B. tissieri'' corrig. Michelini et al. 2016 * '' B. tsurumiense'' Okamoto et al. 2008 * "'' B. urinalis''" Hojo et al. 2007 * '' B. vansinderenii'' Duranti et al. 2017 * '' B. vespertilionis'' Modesto et al. 2021 * '' B. xylocopae'' Alberoni et al. 2019See also
* List of bacterial vaginosis microbiota * Probiotic * Proteobiotics * PrebioticsReferences
External links