An autapse is a
chemical
A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combin ...
or
electrical synapse from a
neuron
A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
onto itself.
It can also be described as a synapse formed by the
axon
An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
of a neuron on its own
dendrites, ''
in vivo'' or ''
in vitro
''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
''.
History
The term "autapse" was first coined in 1972 by Van der Loos and Glaser, who observed them in Golgi preparations of the rabbit
occipital cortex while originally conducting a quantitative analysis of
neocortex
The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, ...
circuitry.
Also in the 1970s, autapses have been described in dog and rat
cerebral cortex
The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of Neuron, neural integration in the central nervous system, and plays ...
, monkey
neostriatum, and cat
spinal cord
The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
.
In 2000, they were first modeled as supporting persistence in
recurrent neural networks.
In 2004, they were modeled as demonstrating
oscillatory behavior, which was absent in the same model neuron without autapse.
More specifically, the neuron oscillated between high firing rates and firing suppression, reflecting the spike
bursting behavior typically found in cerebral neurons. In 2009, autapses were, for the first time, associated with sustained activation. This proposed a possible function for excitatory autapses within a neural circuit.
In 2014, electrical autapses were shown to generate stable
target and
spiral waves in a
neural model network.
This indicated that they played a significant role in stimulating and regulating the collective behavior of neurons in the network. In 2016, a model of resonance was offered.
Autapses have been used to simulate "same cell" conditions to help researchers make quantitative comparisons, such as studying how
''N''-methyl-D-aspartate receptor (NMDAR)
antagonists affect synaptic versus extrasynaptic NMDARs.
Formation
Recently, it has been proposed that autapses could possibly form as a result of neuronal signal transmission blockage, such as in cases of axonal injury induced by poisoning or impeding ion channels. Dendrites from the
soma in addition to an auxiliary axon may develop to form an autapse to help remediate the neuron's signal transmission.
Structure and function
Autapses can be either
glutamate-releasing (excitatory) or
GABA-releasing (inhibitory), just like their traditional synapse counterparts. Similarly, autapses can be electrical or chemical by nature.
Broadly speaking, negative feedback in autapses tends to inhibit excitable neurons whereas positive feedback can stimulate quiescent neurons.
Although the stimulation of inhibitory autapses did not induce
hyperpolarizing inhibitory post-synaptic potentials in
interneuron
Interneurons (also called internuncial neurons, association neurons, connector neurons, or intermediate neurons) are neurons that are not specifically motor neurons or sensory neurons. Interneurons are the central nodes of neural circuits, enab ...
s of
layer V of neocortical slices, they have been shown to impact excitability. Upon using a GABA-antagonist to block autapses, the likelihood of an immediate subsequent second
depolarization
In biology, depolarization or hypopolarization is a change within a cell (biology), cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolar ...
step increased following a first depolarization step. This suggests that autapses act by suppressing the second of two closely timed depolarization steps and therefore, they may provide feedback inhibition onto these cells. This mechanism may also potentially explain
shunting inhibition.
In cell culture, autapses have been shown to contribute to the prolonged activation of
B31/B32 neurons, which significantly contribute food-response behavior in ''
Aplysia''.
This suggests that autapses may play a role in mediating positive feedback. The B31/B32 autapse was unable to play a role in initiating the neuron's activity, although it is believed to have helped sustain the neuron's depolarized state. The extent to which autapses maintain depolarization remains unclear, particularly since other components of the neural circuit (i.e. B63 neurons) are also capable of providing strong synaptic input throughout the depolarization. Additionally, it has been suggested that autapses provide B31/B32 neurons with the ability to quickly
repolarize. Bekkers (2009) has proposed that specifically blocking the contribution of autapses and then assessing the differences with or without blocked autapses could better illuminate the function of autapses.
Hindmarsh–Rose (HR) model neurons have demonstrated
chaotic, regular
spiking,
quiescent, and
periodic patterns of burst firing without autapses. Upon the introduction of an electrical autapse, the periodic state switches to the chaotic state and displays an alternating behavior that increases in frequency with a greater autaptic intensity and time delay. On the other hand, excitatory chemical autapses enhanced the overall chaotic state. The chaotic state was reduced and suppressed in the neurons with inhibitory chemical autapses. In HR model neurons without autapses, the pattern of firing altered from quiescent to periodic and then to chaotic as
DC current
Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even ...
was increased. Generally, HR model neurons with autapses have the ability to swap into any firing pattern, regardless of the prior firing pattern.
Location
Neurons from several brain regions, such as the neocortex, substantia nigra, and hippocampus have been found to contain autapses.
Autapses have been observed to be relatively more abundant in GABAergic
basket and
dendrite-targeting cells of the cat visual cortex compared to spiny
stellate,
double bouquet, and
pyramidal cells, suggesting that the degree of neuron self-innervation is cell-specific. Additionally, dendrite-targeting cell autapses were, on average, further from the soma compared to basket cell autapses.
80% of layer V
pyramidal neurons
Pyramidal cells, or pyramidal neurons, are a type of multipolar neuron found in areas of the brain including the cerebral cortex, the hippocampus, and the amygdala. Pyramidal cells are the primary excitation units of the mammalian prefrontal cort ...
in developing rat neocortices contained autaptic connections, which were located more so on
basal dendrites and apical
oblique dendrites rather than main
apical dendrites. The dendritic positions of synaptic connections of the same cell type were similar to those of autapses, suggesting that autaptic and synaptic networks share a common mechanism of formation.
Disease implications
In the 1990s,
paroxysmal depolarizing shift-type
interictal epileptiform discharges has been suggested to be primarily dependent on autaptic activity for solitary excitatory hippocampal rat neurons grown in microculture.
More recently, in human neocortical tissues of patients with
intractable epilepsy, the GABAergic output autapses of
fast-spiking (FS) neurons have been shown to have stronger
asynchronous release (AR) compared to both non-epileptic tissue and other types of synapses involving FS neurons. The study found similar results using a rat model as well. An increase in residual Ca2+ concentration in addition to the action potential amplitude in FS neurons was suggested to cause this increase in AR of epileptic tissue. Anti-epileptic drugs could potentially target this AR of GABA that seems to rampantly occur at FS neuron autapses.
Effects of drugs
Using a
glia-conditioned medium to treat glia-free purified rat
retinal ganglion microcultures has been shown to significantly increase the number of autapses per neuron compared to a control.
This suggests that glia-derived soluble,
proteinase K-sensitive factors induce autapse formation in rat retinal ganglion cells.
References
{{Nervous tissue
Neurophysiology
Cellular neuroscience
Computational neuroscience
Cell signaling
Signal transduction