
In
physiology
Physiology (; ) is the science, scientific study of function (biology), functions and mechanism (biology), mechanisms in a life, living system. As a branches of science, subdiscipline of biology, physiology focuses on how organisms, organ syst ...
, a stimulus is a change in a
living thing's internal or external
environment. This change can be
detected by an organism or organ using sensitivity, and leads to a physiological reaction.
Sensory receptor
Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded receptor potentials. This process is called sensory transduc ...
s can receive stimuli from outside the body, as in
touch receptors found in the skin or light receptors in the eye, as well as from inside the body, as in
chemoreceptors
A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance ( endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorece ...
and
mechanoreceptors
A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are located on sensory neurons that convert mechanical pressure into electrical signals that, in animals, ar ...
. When a stimulus is detected by a sensory receptor, it can elicit a
reflex
In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.
Reflexes are found with varying levels of complexity in organisms with a nervous system. A reflex occurs ...
via
stimulus transduction. An internal stimulus is often the first component of a
homeostatic control system. External stimuli are capable of producing systemic responses throughout the body, as in the
fight-or-flight response
The fight-or-flight or the fight-flight-freeze-or-fawn (also called hyperarousal or the acute stress response) is a physiological reaction that occurs in response to a perceived harmful event, attack, or threat to survival. It was first describ ...
. In order for a stimulus to be detected with high probability, its level of strength must exceed the
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
; if a signal does reach threshold, the information is transmitted to the
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
(CNS), where it is integrated and a decision on how to react is made. Although stimuli commonly cause the body to respond, it is the CNS that finally determines whether a signal causes a reaction or not.
Types
Internal
Homeostatic imbalances
Homeostatic
In biology, homeostasis (British also homoeostasis; ) is the state of steady internal physical and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, su ...
outbalances are the main driving force for changes of the body. These stimuli are monitored closely by receptors and sensors in different parts of the body. These sensors are
mechanoreceptors
A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are located on sensory neurons that convert mechanical pressure into electrical signals that, in animals, ar ...
,
chemoreceptors
A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance ( endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorece ...
and
thermoreceptors
A thermoreceptor is a non-specialised sense receptor, or more accurately the receptive portion of a sensory neuron, that codes absolute and relative changes in temperature, primarily within the innocuous range. In the mammalian peripheral nervous ...
that, respectively, respond to pressure or stretching, chemical changes, or temperature changes. Examples of mechanoreceptors include
baroreceptors
Baroreceptors (or archaically, pressoreceptors) are stretch receptors that sense blood pressure. Thus, increases in the pressure of blood vessel triggers increased action potential generation rates and provides information to the central nervous sy ...
which detect changes in blood pressure,
Merkel's discs
Merkel nerve endings (also Merkel's disks, or Merkel tactile endings) are mechanoreceptors situated in the basal epidermis as well as around the apical ends or some hair follicles. They are slowly adapting. They have small receptive fields measuri ...
which can detect sustained touch and pressure, and
hair cell
Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment. ...
s which detect sound stimuli. Homeostatic imbalances that can serve as internal stimuli include nutrient and ion levels in the blood, oxygen levels, and water levels. Deviations from the homeostatic ideal may generate a
homeostatic emotion
Homeostatic feeling is a class of feelings (e.g. thirst, fatigue, pain, desire, malaise, well-being) that inform us about our physiological condition. In his earlier work Antonio Damasio used "primordial feeling" but he now prefers the term "homeos ...
, such as pain, thirst or fatigue, that motivates behavior that will restore the body to stasis (such as withdrawal, drinking or resting).
Blood pressure
Blood pressure, heart rate, and cardiac output are measured by stretch receptors found in the
carotid arteries
In anatomy, the left and right common carotid arteries (carotids) () are arteries that supply the head and neck with oxygenated blood; they divide in the neck to form the external and internal carotid arteries.
Structure
The common carotid ...
.
Nerve
A nerve is an enclosed, cable-like bundle of nerve fibers (called axons). Nerves have historically been considered the basic units of the peripheral nervous system. A nerve provides a common pathway for the Electrochemistry, electrochemical nerv ...
s embed themselves within these receptors and when they detect stretching, they are stimulated and fire
action potentials
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. ...
to the
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
. These impulses inhibit the constriction of blood vessels and lower the heart rate. If these nerves do not detect stretching, the body determines perceives low blood pressure as a dangerous stimulus and signals are not sent, preventing the inhibition CNS action; blood vessels constrict and the heart rate increases, causing an increase in blood pressure in the body.
External
Touch and pain
Sensory
feeling
According to the '' APA Dictionary of Psychology'', a feeling is "a self-contained phenomenal experience"; feelings are "subjective, evaluative, and independent of the sensations, thoughts, or images evoking them". The term ''feeling'' is closel ...
s, especially
pain
Pain is a distressing feeling often caused by intense or damaging Stimulus (physiology), stimuli. The International Association for the Study of Pain defines pain as "an unpleasant sense, sensory and emotional experience associated with, or res ...
, are stimuli that can elicit a large response and cause neurological changes in the body. Pain also causes a behavioral change in the body, which is proportional to the intensity of the pain. The feeling is recorded by sensory receptors on the skin and travels to the
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
, where it is integrated and a decision on how to respond is made; if it is decided that a response must be made, a signal is sent back down to a muscle, which behaves appropriately according to the stimulus.
The postcentral gyrus is the location of the
primary somatosensory area
In neuroanatomy, the postcentral gyrus is a prominent gyrus in the lateral parietal lobe of the human brain. It is the location of the primary somatosensory cortex, the main sensory receptive area for the sense of touch. Like other sensory areas ...
, the main sensory receptive area for the
sense of touch
The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. The main functions of the somatosensory system are the perception of external stimuli, the perception of internal stimuli, and the regulation of bod ...
.
Pain receptors are known as
nociceptors
A nociceptor (; ) is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, ...
. Two main types of
nociceptors
A nociceptor (; ) is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, ...
exist, A-fiber nociceptors and
C-fiber nociceptors.
A-fiber receptors are myelinated and conduct currents rapidly. They are mainly used to conduct fast and sharp types of pain. Conversely, C-fiber receptors are unmyelinated and slowly transmit. These receptors conduct slow, burning, diffuse pain.
The
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
for touch is the minimum amount of sensation needed to elicit a response from touch receptors. This amount of sensation has a definable value and is often considered to be the force exerted by dropping the wing of a bee onto a person's cheek from a distance of one centimeter. This value will change based on the body part being touched.
Vision
Vision provides opportunity for the brain to perceive and respond to changes occurring around the body. Information, or stimuli, in the form of light enters the
retina
The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
, where it excites a special type of
neuron
A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
called a
photoreceptor cell
A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiation ...
. A local
graded potential
Graded potentials are changes in membrane potential that vary according to the size of the stimulus, as opposed to being all-or-none. They include diverse potentials such as receptor potentials, electrotonic potentials, subthreshold membrane pot ...
begins in the photoreceptor, where it excites the
cell
Cell most often refers to:
* Cell (biology), the functional basic unit of life
* Cellphone, a phone connected to a cellular network
* Clandestine cell, a penetration-resistant form of a secret or outlawed organization
* Electrochemical cell, a de ...
enough for the impulse to be passed along through a track of neurons to the
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
. As the signal travels from photoreceptors to larger neurons,
action potentials
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. ...
must be created for the signal to have enough strength to reach the CNS.
If the stimulus does not warrant a strong enough response, it is said to not reach
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
, and the body does not react. However, if the stimulus is strong enough to create an action potential in neurons away from the photoreceptor, the body will integrate the information and react appropriately. Visual information is processed in the
occipital lobe
The occipital lobe is one of the four Lobes of the brain, major lobes of the cerebral cortex in the brain of mammals. The name derives from its position at the back of the head, from the Latin , 'behind', and , 'head'.
The occipital lobe is the ...
of the CNS, specifically in the
primary visual cortex
The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus ...
.
The
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
for vision is the minimum amount of sensation needed to elicit a response from
photoreceptors in the eye. This amount of sensation has a definable value and is often considered to be the amount of light present from someone holding up a single candle 30 miles away, if one's eyes were
adjusted to the dark.
Smell
Smell allows the body to recognize chemical molecules in the air through inhalation.
Olfactory
The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste.
In humans, it ...
organs
In a multicellular organism, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to a ...
located on either side of the
nasal septum
The nasal septum () separates the left and right airways of the Human nose, nasal cavity, dividing the two nostrils.
It is Depression (kinesiology), depressed by the depressor septi nasi muscle.
Structure
The fleshy external end of the nasal s ...
consist of
olfactory epithelium
The olfactory epithelium is a specialized epithelium, epithelial tissue inside the nasal cavity that is involved in olfaction, smell. In humans, it measures
and lies on the roof of the nasal cavity about above and behind the nostrils. The olfact ...
and
lamina propria
The lamina propria is a thin layer of connective tissue that forms part of the moist linings known as mucous membranes or mucosae, which line various tubes in the body, such as the respiratory tract, the gastrointestinal tract, and the urogenital ...
. The olfactory epithelium, which contains olfactory receptor cells, covers the inferior surface of the
cribiform plate, the superior portion of the perpendicular plate, the superior nasal concha. Only roughly two percent of airborne compounds inhaled are carried to olfactory organs as a small sample of the air being inhaled. Olfactory receptors extend past the epithelial surface providing a base for many cilia that lie in the surrounding mucus. Odorant-binding proteins interact with these
cilia
The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike proj ...
stimulating the receptors. Odorants are generally small organic molecules. Greater water and lipid solubility is related directly to stronger smelling odorants. Odorant binding to G protein coupled receptors activates
adenylate cyclase
Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction:
:A ...
, which converts
ATP to camp.
cAMP
Camp may refer to:
Areas of confinement, imprisonment, or for execution
* Concentration camp, an internment camp for political prisoners or politically targeted demographics, such as members of national or minority ethnic groups
* Extermination ...
, in turn, promotes the opening of sodium channels resulting in a localized potential.
The
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
for smell is the minimum amount of sensation needed to elicit a response from receptors in the nose. This amount of sensation has a definable value and is often considered to be a single drop of perfume in a six-room house. This value will change depending on what substance is being smelled.
Taste
Taste
The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste. Taste is the perception stimulated when a substance in the mouth biochemistry, reacts chemically with taste receptor cells l ...
records flavoring of food and other materials that pass across the
tongue
The tongue is a Muscle, muscular organ (anatomy), organ in the mouth of a typical tetrapod. It manipulates food for chewing and swallowing as part of the digestive system, digestive process, and is the primary organ of taste. The tongue's upper s ...
and through the mouth. Gustatory cells are located on the surface of the
tongue
The tongue is a Muscle, muscular organ (anatomy), organ in the mouth of a typical tetrapod. It manipulates food for chewing and swallowing as part of the digestive system, digestive process, and is the primary organ of taste. The tongue's upper s ...
and adjacent portions of the
pharynx
The pharynx (: pharynges) is the part of the throat behind the human mouth, mouth and nasal cavity, and above the esophagus and trachea (the tubes going down to the stomach and the lungs respectively). It is found in vertebrates and invertebrates ...
and
larynx
The larynx (), commonly called the voice box, is an organ (anatomy), organ in the top of the neck involved in breathing, producing sound and protecting the trachea against food aspiration. The opening of larynx into pharynx known as the laryngeal ...
. Gustatory cells form on
taste bud
Taste buds are clusters of taste receptor cells, which are also known as gustatory cells. The taste receptors are located around the small structures known as papillae found on the upper surface of the tongue, soft palate, upper esophagus, ...
s, specialized
epithelial cells
Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
, and are generally turned over every ten days. From each cell, protrudes microvilli, sometimes called taste hairs, through also the taste pore and into the oral cavity. Dissolved chemicals interact with these receptor cells; different tastes bind to specific receptors. Salt and sour receptors are chemically gated ion channels, which depolarize the cell. Sweet, bitter, and umami receptors are called
gustducin
Gustducin is a G protein associated with taste and the gustatory system, found in some taste receptor cells.
Research on the discovery and isolation of gustducin is recent. It is known to play a large role in the transduction of bitter, sweet ...
s, specialized
G protein coupled receptors
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
. Both divisions of receptor cells release neurotransmitters to afferent fibers causing
action potential
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
firing.
The
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
for taste is the minimum amount of sensation needed to elicit a response from receptors in the mouth. This amount of sensation has a definable value and is often considered to be a single drop of
quinine sulfate
Quinine is a medication used to treat malaria and babesiosis. This includes the treatment of malaria due to ''Plasmodium falciparum'' that is resistant to chloroquine when artesunate is not available. While sometimes used for nocturnal le ...
in 250 gallons of water.
Sound
Changes in pressure caused by sound reaching the external ear resonate in the
tympanic membrane
In the anatomy of humans and various other tetrapods, the eardrum, also called the tympanic membrane or myringa, is a thin, cone-shaped membrane that separates the external ear from the middle ear. Its function is to transmit changes in pressur ...
, which articulates with the auditory ossicles, or the bones of the middle ear. These tiny bones multiply these pressure fluctuations as they pass the disturbance into the cochlea, a spiral-shaped bony structure within the inner ear. Hair cells in the cochlear duct, specifically the
organ of Corti
The organ of Corti, or spiral organ, is the receptor organ for hearing and is located in the mammalian cochlea. This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. Trans ...
, are deflected as waves of fluid and membrane motion travel through the chambers of the cochlea. Bipolar sensory neurons located in the center of the cochlea monitor the information from these receptor cells and pass it on to the brainstem via the cochlear branch of
cranial nerve VIII
The vestibulocochlear nerve or auditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the bra ...
. Sound information is processed in the
temporal lobe
The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.
The temporal lobe is involved in pr ...
of the CNS, specifically in the
primary auditory cortex
The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to ...
.
The
absolute threshold
In neuroscience and psychophysics, an absolute threshold was originally defined as the lowest level of a stimulus – light, sound, touch, etc. – that an organism could detect. Under the influence of signal detection theory, absolute threshold ...
for sound is the minimum amount of sensation needed to elicit a response from receptors in the ears. This amount of sensation has a definable value and is often considered to be a watch ticking in an otherwise soundless environment 20 feet away.
Equilibrium
Semi circular ducts, which are connected directly to the
cochlea
The cochlea is the part of the inner ear involved in hearing. It is a spiral-shaped cavity in the bony labyrinth, in humans making 2.75 turns around its axis, the modiolus (cochlea), modiolus. A core component of the cochlea is the organ of Cort ...
, can interpret and convey to the brain information about equilibrium by a similar method as the one used for hearing.
Hair cell
Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment. ...
s in these parts of the ear protrude kinocilia and stereocilia into a gelatinous material that lines the ducts of this canal. In parts of these semi circular canals, specifically the maculae, calcium carbonate crystals known as statoconia rest on the surface of this gelatinous material. When tilting the head or when the body undergoes linear acceleration, these crystals move disturbing the cilia of the hair cells and, consequently, affecting the release of neurotransmitter to be taken up by surrounding sensory nerves. In other areas of the semi circular canal, specifically the ampulla, a structure known as the cupula—analogous to the gelatinous material in the maculae—distorts hair cells in a similar fashion when the fluid medium that surrounds it causes the cupula itself to move. The ampulla communicates to the brain information about the head's horizontal rotation. Neurons of the adjacent vestibular ganglia monitor the hair cells in these ducts. These sensory fibers form the vestibular branch of the
cranial nerve VIII
The vestibulocochlear nerve or auditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the bra ...
.
Cellular response
In general, cellular response to stimuli is defined as a change in state or activity of a cell in terms of movement, secretion, enzyme production, or gene expression. Receptors on cell surfaces are sensing components that monitor stimuli and respond to changes in the environment by relaying the signal to a control center for further processing and response. Stimuli are always converted into electrical signals via
transduction. This electrical signal, or
receptor potential A receptor potential, also known as a generator potential, a type of graded potential, is the transmembrane potential difference produced by activation of a sensory receptor.
A receptor potential is often produced by sensory transduction. It is ...
, takes a specific pathway through the nervous system to initiate a systematic response. Each type of receptor is specialized to respond preferentially to only one kind of stimulus energy, called the
adequate stimulus The adequate stimulus is a property of a sensory receptor that determines the type of energy to which a sensory receptor responds with the initiation of sensory transduction. Sensory receptor are specialized to respond to certain types of stimuli. T ...
. Sensory receptors have a well-defined range of stimuli to which they respond, and each is tuned to the particular needs of the organism. Stimuli are relayed throughout the body by mechanotransduction or chemotransduction, depending on the nature of the stimulus.
Mechanical
In response to a mechanical stimulus, cellular sensors of force are proposed to be extracellular matrix molecules, cytoskeleton, transmembrane proteins, proteins at the membrane-phospholipid interface, elements of the nuclear matrix, chromatin, and the lipid bilayer. Response can be twofold: the extracellular matrix, for example, is a conductor of mechanical forces but its structure and composition is also influenced by the cellular responses to those same applied or endogenously generated forces. Mechanosensitive ion channels are found in many cell types and it has been shown that the permeability of these channels to cations is affected by stretch receptors and mechanical stimuli. This permeability of ion channels is the basis for the conversion of the mechanical stimulus into an electrical signal.
Chemical
Chemical stimuli, such as odorants, are received by cellular receptors that are often coupled to ion channels responsible for chemotransduction. Such is the case in
olfactory cells
An olfactory receptor neuron (ORN), also called an olfactory sensory neuron (OSN), is a sensory neuron within the olfactory system.
Structure
Humans have between 10 and 20 million olfactory receptor neurons (ORNs). In vertebrates, ORNs are b ...
. Depolarization in these cells result from opening of non-selective cation channels upon binding of the odorant to the specific receptor.
G protein-coupled receptor
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related ...
s in the plasma membrane of these cells can initiate second messenger pathways that cause cation channels to open.
In response to stimuli, the
sensory receptor
Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded receptor potentials. This process is called sensory transduc ...
initiates sensory transduction by creating graded potentials or action potentials in the same cell or in an adjacent one. Sensitivity to stimuli is obtained by chemical amplification through
second messenger pathways in which enzymatic cascades produce large numbers of intermediate products, increasing the effect of one receptor molecule.
Systematic response
Nervous-system response
Though receptors and stimuli are varied, most extrinsic stimuli first generate
localized graded potential
Graded potentials are changes in membrane potential that vary according to the size of the stimulus, as opposed to being all-or-none. They include diverse potentials such as receptor potentials, electrotonic potentials, subthreshold membrane pot ...
s in the neurons associated with the specific sensory organ or tissue.
In the
nervous system
In biology, the nervous system is the complex system, highly complex part of an animal that coordinates its behavior, actions and sense, sensory information by transmitting action potential, signals to and from different parts of its body. Th ...
, internal and external stimuli can elicit two different categories of responses: an excitatory response, normally in the form of an
action potential
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
, and an inhibitory response. When a
neuron
A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
is stimulated by an excitatory impulse, neuronal
dendrite
A dendrite (from Ancient Greek language, Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the neurotransmission, electrochemical stimulation received from oth ...
s are bound by
neurotransmitter
A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell.
Neurotra ...
s which cause the cell to become permeable to a specific type of ion; the type of neurotransmitter determines to which ion the neurotransmitter will become permeable. In
excitatory postsynaptic potential
In neuroscience, an excitatory postsynaptic potential (EPSP) is a postsynaptic potential that makes the postsynaptic neuron more likely to fire an action potential. This temporary depolarization of postsynaptic membrane potential, caused by the ...
s, an excitatory response is generated. This is caused by an excitatory neurotransmitter, normally
glutamate
Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
binding to a neuron's dendrites, causing an influx of sodium ions through channels located near the binding site.
This change in membrane permeability in the dendrites is known as a local graded potential and causes the membrane voltage to change from a negative
resting potential
The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
to a more positive voltage, a process known as
depolarization
In biology, depolarization or hypopolarization is a change within a cell (biology), cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolar ...
. The opening of sodium channels allows nearby sodium channels to open, allowing the change in permeability to spread from the dendrites to the
cell body
In cellular neuroscience, the soma (: somata or somas; ), neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. Although it is often used to refer to neurons, it can also ...
. If a graded potential is strong enough, or if several graded potentials occur in a fast enough frequency, the depolarization is able to spread across the cell body to the
axon hillock
The axon hillock is a specialized part of the cell body (or soma) of a neuron that connects to the axon. It can be identified using light microscopy from its appearance and location in a neuron and from its sparse distribution of Nissl substanc ...
. From the axon hillock, an action potential can be generated and propagated down the neuron's
axon
An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
, causing sodium ion channels in the axon to open as the impulse travels. Once the signal begins to travel down the axon, the membrane potential has already passed
threshold
Threshold may refer to:
Science Biology
* Threshold (reference value)
* Absolute threshold
* Absolute threshold of hearing
* Action potential
* Aerobic threshold
* Anaerobic threshold
* Dark adaptation threshold
* Epidemic threshold
* Flicke ...
, which means that it cannot be stopped. This phenomenon is known as an all-or-nothing response. Groups of sodium channels opened by the change in membrane potential strengthen the signal as it travels away from the axon hillock, allowing it to move the length of the axon. As the depolarization reaches the end of the axon, or the
axon terminal
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a Neuron, nerve cell tha ...
, the end of the neuron becomes permeable to calcium ions, which enters the cell via calcium ion channels. Calcium causes the release of neurotransmitters stored in
synaptic vesicle
In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are exocytosis, released at the chemical synapse, synapse. The release is regulated by a voltage-dependent calcium channel. Vesicle (biology), Ves ...
s, which enter the synapse between two neurons known as the presynaptic and postsynaptic neurons; if the signal from the presynaptic neuron is excitatory, it will cause the release of an excitatory neurotransmitter, causing a similar response in the postsynaptic neuron.
These neurons may communicate with thousands of other receptors and target cells through extensive, complex dendritic networks. Communication between receptors in this fashion enables discrimination and the more explicit interpretation of external stimuli. Effectively, these localized graded potentials trigger action potentials that communicate, in their frequency, along nerve axons eventually arriving in specific cortexes of the brain. In these also highly specialized parts of the brain, these signals are coordinated with others to possibly trigger a new response.
If a signal from the presynaptic neuron is inhibitory, inhibitory neurotransmitters, normally
GABA
GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system.
GA ...
will be released into the synapse.
This neurotransmitter causes an
inhibitory postsynaptic potential
An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential.Purves et al. Neuroscience. 4th ed. Sunderland (MA): Sinauer Associates, Incorporated; 2008. ...
in the postsynaptic neuron. This response will cause the postsynaptic neuron to become permeable to chloride ions, making the membrane potential of the cell negative; a negative membrane potential makes it more difficult for the cell to fire an action potential and prevents any signal from being passed on through the neuron. Depending on the type of stimulus, a neuron can be either excitatory or inhibitory.
Muscular-system response
Nerves in the
peripheral nervous system
The peripheral nervous system (PNS) is one of two components that make up the nervous system of Bilateria, bilateral animals, with the other part being the central nervous system (CNS). The PNS consists of nerves and ganglia, which lie outside t ...
spread out to various parts of the body, including
muscle fiber
A muscle cell, also known as a myocyte, is a mature contractile cell in the muscle of an animal. In humans and other vertebrates there are three types: skeletal, smooth, and cardiac (cardiomyocytes). A skeletal muscle cell is long and threadl ...
s. A muscle fiber and the
motor neuron
A motor neuron (or motoneuron), also known as efferent neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly o ...
to which it is connected.
The spot at which the motor neuron attaches to the muscle fiber is known as the
neuromuscular junction
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber.
It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction.
Muscles require innervation to ...
. When muscles receive information from internal or external stimuli, muscle fibers are stimulated by their respective motor neuron. Impulses are passed from the
central nervous system
The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
down neurons until they reach the motor neuron, which releases the neurotransmitter
acetylcholine
Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
(ACh) into the neuromuscular junction. ACh binds to
nicotinic acetylcholine receptors
Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral ner ...
on the surface of the muscle cell and opens ion channels, allowing sodium ions to flow into the cell and potassium ions to flow out; this ion movement causes a depolarization, which allows for the release of calcium ions within the cell. Calcium ions bind to proteins within the muscle cell to allow for muscle contraction; the ultimate consequence of a stimulus.
Endocrine-system response
Vasopressin
The
endocrine system
The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant Organ (biology), organs. In vertebrat ...
is affected largely by many internal and external stimuli. One internal stimulus that causes
hormone
A hormone (from the Ancient Greek, Greek participle , "setting in motion") is a class of cell signaling, signaling molecules in multicellular organisms that are sent to distant organs or tissues by complex biological processes to regulate physio ...
release is
blood pressure
Blood pressure (BP) is the pressure of Circulatory system, circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term ...
.
Hypotension
Hypotension, also known as low blood pressure, is a cardiovascular condition characterized by abnormally reduced blood pressure. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood and is ...
, or low blood pressure, is a large driving force for the release of
vasopressin
Mammalian vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the ''AVP'' gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It ...
, a hormone which causes the retention of water in the kidneys. This process also increases an individual's thirst. By fluid retention or by consuming fluids, if an individual's blood pressure returns to normal, vasopressin release slows and less fluid is retained by the kidneys.
Hypovolemia
Hypovolemia, also known as volume depletion or volume contraction, is a state of abnormally low extracellular fluid in the body. This may be due to either a loss of both salt and water or a decrease in blood volume. Hypovolemia refers to the loss ...
, or low fluid levels in the body, can also act as a stimulus to cause this response.
Epinephrine
Epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands a ...
, also known as adrenaline, is also used commonly to respond to both internal and external changes. One common cause of the release of this hormone is the
Fight-or-flight response
The fight-or-flight or the fight-flight-freeze-or-fawn (also called hyperarousal or the acute stress response) is a physiological reaction that occurs in response to a perceived harmful event, attack, or threat to survival. It was first describ ...
. When the body encounters an external stimulus that is potentially dangerous, epinephrine is released from the
adrenal glands
The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which ...
. Epinephrine causes physiological changes in the body, such as constriction of blood vessels, dilation of pupils, increased heart and respiratory rate, and the metabolism of glucose. All of these responses to a single stimuli aid in protecting the individual, whether the decision is made to stay and fight, or run away and avoid danger.
Digestive-system response
Cephalic phase
The
digestive system
The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller compone ...
can respond to external stimuli, such as the sight or smell of food, and cause physiological changes before the food ever enters the body. This reflex is known as the
cephalic phase
The nervous system and endocrine system collaborate in the digestive system to control gastric secretions, and motility associated with the movement of food throughout the gastrointestinal tract, including peristalsis, and segmentation contractions ...
of
digestion
Digestion is the breakdown of large insoluble food compounds into small water-soluble components so that they can be absorbed into the blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into th ...
. The sight and smell of food are strong enough stimuli to cause salivation, gastric and pancreatic enzyme secretion, and endocrine secretion in preparation for the incoming nutrients; by starting the digestive process before food reaches the stomach, the body is able to more effectively and efficiently metabolize food into necessary nutrients.
Once food hits the mouth, taste and information from receptors in the mouth add to the digestive response.
Chemoreceptors
A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance ( endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorece ...
and
mechanorceptors, activated by chewing and swallowing, further increase the enzyme release in the stomach and intestine.
Enteric nervous system
The
digestive system
The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver, and gallbladder). Digestion involves the breakdown of food into smaller and smaller compone ...
is also able to respond to internal stimuli. The digestive tract, or
enteric nervous system
The enteric nervous system (ENS) is one of the three divisions of the autonomic nervous system (ANS), the others being the sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS). It consists of a mesh-like system of neurons th ...
alone contains millions of neurons. These neurons act as sensory receptors that can detect changes, such as food entering the small intestine, in the digestive tract. Depending on what these sensory receptors detect, certain enzymes and digestive juices from the pancreas and liver can be secreted to aid in metabolism and breakdown of food.
Research methods and techniques
Clamping techniques
Intracellular measurements of electrical potential across the membrane can be obtained by microelectrode recording. Patch clamp techniques allow for the manipulation of the intracellular or extracellular ionic or lipid concentration while still recording potential. In this way, the effect of various conditions on threshold and propagation can be assessed.
Noninvasive neuronal scanning
Positron emission tomography (PET) and magnetic resonance imaging (MRI) permit the noninvasive visualization of activated regions of the brain while the test subject is exposed to different stimuli. Activity is monitored in relation to blood flow to a particular region of the brain.
Other methods
Hindlimb withdrawal time is another method. Sorin Barac et al. in a recent paper published in the Journal of Reconstructive Microsurgery monitored the response of test rats to pain stimuli by inducing an acute, external heat stimulus and measuring hindlimb withdrawal times (HLWT).
See also
*
Reflex
In biology, a reflex, or reflex action, is an involuntary, unplanned sequence or action and nearly instantaneous response to a stimulus.
Reflexes are found with varying levels of complexity in organisms with a nervous system. A reflex occurs ...
*
Sensory stimulation therapy
*
Stimulation
Stimulation is the encouragement of development or the cause of activity in general. For example, "The press provides stimulation of political discourse." An interesting or fun activity can be described as "stimulating", regardless of its physic ...
*
Stimulus (psychology)
In psychology, a stimulus is any object or event that elicits a sensory or behavioral response in an organism. In this context, a distinction is made between the ''distal stimulus'' (the external, perceived object) and the ''proximal stimulus'' ( ...
References
{{Authority control
Neurophysiology
Plant intelligence