Anisotropic Group
   HOME

TheInfoList



OR:

Anisotropy () is the structural property of non-uniformity in different directions, as opposed to
isotropy In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also u ...
. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical or
mechanical properties A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one mate ...
when measured along different axes, e.g.
absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative log ...
,
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
, conductivity, and
tensile strength Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or F_\text in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate ...
. An example of anisotropy is light coming through a
polarizer A polarizer or polariser is an optical filter that lets light waves of a specific polarization (waves), polarization pass through while attenuation, blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed ...
. Another is
wood Wood is a structural tissue/material found as xylem in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulosic fibers that are strong in tension and embedded in a matrix of lignin t ...
, which is easier to split along its
grain A grain is a small, hard, dry fruit (caryopsis) – with or without an attached husk, hull layer – harvested for human or animal consumption. A grain crop is a grain-producing plant. The two main types of commercial grain crops are cereals and ...
than across it because of the directional non-uniformity of the grain (the grain is the same in one direction, not all directions).


Fields of interest


Computer graphics

In the field of
computer graphics Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. ...
, an anisotropic surface changes in appearance as it rotates about its geometric normal, as is the case with
velvet Velvet is a type of woven fabric with a dense, even pile (textile), pile that gives it a distinctive soft feel. Historically, velvet was typically made from silk. Modern velvet can be made from silk, linen, cotton, wool, synthetic fibers, silk ...
.
Anisotropic filtering In 3D computer graphics, anisotropic filtering (AF) is a technique that improves the appearance of Texture filtering, textures, especially on surfaces viewed at sharp Viewing angle, angles. It helps make textures look sharper and more detailed ...
(AF) is a method of enhancing the image quality of textures on surfaces that are far away and viewed at a shallow angle. Older techniques, such as bilinear and
trilinear filtering Trilinear filtering is an extension of the bilinear texture filtering method, which also performs linear interpolation between mipmaps. Bilinear filtering has several weaknesses that make it an unattractive choice in many cases: using it on a ...
, do not take into account the angle a surface is viewed from, which can result in
aliasing In signal processing and related disciplines, aliasing is a phenomenon that a reconstructed signal from samples of the original signal contains low frequency components that are not present in the original one. This is caused when, in the ori ...
or blurring of textures. By reducing detail in one direction more than another, these effects can be reduced easily.


Chemistry

A chemical anisotropic
filter Filtration is a physical process that separates solid matter and fluid from a mixture. Filter, filtering, filters or filtration may also refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Fil ...
, as used to filter particles, is a filter with increasingly smaller interstitial spaces in the direction of filtration so that the
proximal Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position prov ...
regions filter out larger particles and
distal Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position provi ...
regions increasingly remove smaller particles, resulting in greater flow-through and more efficient filtration. In
fluorescence spectroscopy Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electro ...
, the
fluorescence anisotropy Fluorescence anisotropy or fluorescence polarization is the phenomenon where the light emitted by a fluorophore has unequal intensities along different axes of polarization. Early pioneers in the field include Aleksander Jablonski, Gregorio Webe ...
, calculated from the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
properties of fluorescence from samples excited with plane-polarized light, is used, e.g., to determine the shape of a macromolecule. Anisotropy measurements reveal the average angular displacement of the fluorophore that occurs between absorption and subsequent emission of a photon. In
NMR spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic f ...
, the orientation of nuclei with respect to the applied
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
determines their
chemical shift In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure of ...
. In this context, anisotropic systems refer to the electron distribution of molecules with abnormally high electron density, like the pi system of
benzene Benzene is an Organic compound, organic chemical compound with the Chemical formula#Molecular formula, molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar hexagonal Ring (chemistry), ring with one hyd ...
. This abnormal electron density affects the applied magnetic field and causes the observed chemical shift to change.


Real-world imagery

Images of a gravity-bound or man-made environment are particularly anisotropic in the orientation domain, with more image structure located at orientations parallel with or orthogonal to the direction of gravity (vertical and horizontal).


Physics

Physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
s from
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
reported about their detection of the cosmic anisotropy in
cosmic microwave background radiation The cosmic microwave background (CMB, CMBR), or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dar ...
in 1977. Their experiment demonstrated the
Doppler shift The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described t ...
caused by the movement of the earth with respect to the early Universe matter, the source of the radiation. Cosmic anisotropy has also been seen in the alignment of galaxies' rotation axes and polarization angles of quasars. Physicists use the term anisotropy to describe direction-dependent properties of materials.
Magnetic anisotropy In condensed matter physics, magnetic anisotropy describes how an object's magnetic properties can be anisotropy, different depending on direction. In the simplest case, there is no preferential direction for an object's magnetic moment. It will ...
, for example, may occur in a plasma, so that its magnetic field is oriented in a preferred direction. Plasmas may also show "filamentation" (such as that seen in
lightning Lightning is a natural phenomenon consisting of electrostatic discharges occurring through the atmosphere between two electrically charged regions. One or both regions are within the atmosphere, with the second region sometimes occurring on ...
or a
plasma globe A plasma ball, plasma globe, or plasma lamp is a clear glass container filled with noble gases, usually a mixture of neon, krypton, and xenon, that has a high-voltage electrode in the center of the container. When voltage is applied, a plasma (p ...
) that is directional. An ''anisotropic liquid'' has the fluidity of a normal liquid, but has an average structural order relative to each other along the molecular axis, unlike water or
chloroform Chloroform, or trichloromethane (often abbreviated as TCM), is an organochloride with the formula and a common solvent. It is a volatile, colorless, sweet-smelling, dense liquid produced on a large scale as a precursor to refrigerants and po ...
, which contain no structural ordering of the molecules.
Liquid crystal Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as i ...
s are examples of anisotropic liquids. Some materials conduct heat in a way that is isotropic, that is independent of spatial orientation around the heat source. Heat conduction is more commonly anisotropic, which implies that detailed geometric modeling of typically diverse materials being thermally managed is required. The materials used to transfer and reject heat from the heat source in
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
are often anisotropic. Many
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s are anisotropic to
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
("optical anisotropy"), and exhibit properties such as
birefringence Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefrin ...
.
Crystal optics Crystal optics is the branch of optics that describes the behaviour of light in ''anisotropic media'', that is, media (such as crystals) in which light behaves differently depending on which direction the light is propagating. The index of refrac ...
describes light propagation in these media. An "axis of anisotropy" is defined as the axis along which isotropy is broken (or an axis of symmetry, such as normal to crystalline layers). Some materials can have multiple such optical axes.


Geophysics and geology

Seismic anisotropy Seismic anisotropy is the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth. Description A material is said to be anisotropic if the value of one or more of its properties varies with direction. Anisotrop ...
is the variation of seismic wavespeed with direction. Seismic anisotropy is an indicator of long range order in a material, where features smaller than the seismic
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
(e.g., crystals, cracks, pores, layers, or inclusions) have a dominant alignment. This alignment leads to a directional variation of elasticity wavespeed. Measuring the effects of anisotropy in seismic data can provide important information about processes and mineralogy in the Earth; significant seismic anisotropy has been detected in the Earth's crust, mantle, and
inner core Earth's inner core is the innermost internal structure of Earth, geologic layer of the planet Earth. It is primarily a solid ball (mathematics), ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. T ...
.
Geological Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth s ...
formations with distinct layers of
sedimentary Sedimentary rocks are types of rock formed by the cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or deposited at Earth's surface. Sedime ...
material can exhibit electrical anisotropy;
electrical conductivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
in one direction (e.g. parallel to a layer), is different from that in another (e.g. perpendicular to a layer). This property is used in the gas and
oil exploration Hydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for hydrocarbon deposits, particularly petroleum and natural gas, in the Earth's crust using petroleum geology. Exploration methods V ...
industry to identify
hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic; their odor is usually fain ...
-bearing sands in sequences of
sand Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is usually defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural ...
and
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of Clay mineral, clay minerals (hydrous aluminium phyllosilicates, e.g., Kaolinite, kaolin, aluminium, Al2Silicon, Si2Oxygen, O5(hydroxide, OH)4) and tiny f ...
. Sand-bearing hydrocarbon assets have high
resistivity Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity i ...
(low conductivity), whereas shales have lower resistivity.
Formation evaluation Formation Evaluation in Petroleum Engineering is the process of assessing subsurface rock formations to determine their ability to produce oil and gas. It helps identify hydrocarbon-bearing zones, understand reservoir properties, and make decision ...
instruments measure this conductivity or resistivity, and the results are used to help find oil and gas in wells. The mechanical anisotropy measured for some of the sedimentary rocks like coal and shale can change with corresponding changes in their surface properties like sorption when gases are produced from the coal and shale reservoirs. The
hydraulic conductivity In science and engineering, hydraulic conductivity (, in SI units of meters per second), is a property of porous materials, soils and Rock (geology), rocks, that describes the ease with which a fluid (usually water) can move through the porosity, ...
of
aquifer An aquifer is an underground layer of water-bearing material, consisting of permeability (Earth sciences), permeable or fractured rock, or of unconsolidated materials (gravel, sand, or silt). Aquifers vary greatly in their characteristics. The s ...
s is often anisotropic for the same reason. When calculating groundwater flow to drains or to wells, the difference between horizontal and vertical permeability must be taken into account; otherwise the results may be subject to error. Most common rock-forming
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s are anisotropic, including
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
and
feldspar Feldspar ( ; sometimes spelled felspar) is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the ''plagiocl ...
. Anisotropy in minerals is most reliably seen in their
optical properties The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: *Refractiv ...
. An example of an isotropic mineral is
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. Garnet minerals, while sharing similar physical and crystallographic properties, exhibit a wide range of chemical compositions, de ...
. Igneous rock like granite also shows the anisotropy due to the orientation of the minerals during the solidification process.


Medical acoustics

Anisotropy is also a well-known property in
medical ultrasound Medical ultrasound includes Medical diagnosis, diagnostic techniques (mainly medical imaging, imaging) using ultrasound, as well as therapeutic ultrasound, therapeutic applications of ultrasound. In diagnosis, it is used to create an image of ...
imaging describing a different resulting
echogenicity Echogenicity (sometimes as echogenecity) or echogeneity is the ability to bounce an echo, e.g. return the signal in medical ultrasound examinations. In other words, echogenicity is higher when the surface bouncing the sound echo reflects increase ...
of soft tissues, such as
tendon A tendon or sinew is a tough band of fibrous connective tissue, dense fibrous connective tissue that connects skeletal muscle, muscle to bone. It sends the mechanical forces of muscle contraction to the skeletal system, while withstanding tensi ...
s, when the angle of the
transducer A transducer is a device that Energy transformation, converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, M ...
is changed. Tendon fibers appear hyperechoic (bright) when the transducer is perpendicular to the tendon, but can appear hypoechoic (darker) when the transducer is angled obliquely. This can be a source of interpretation error for inexperienced practitioners.


Materials science and engineering

Anisotropy, in
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
, is a material's directional dependence of a
physical property A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called ''physical ...
. This is a critical consideration for
materials selection Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. Systematic selection of the best materi ...
in engineering applications. A material with physical properties that are symmetric about an axis that is normal to a plane of isotropy is called a transversely isotropic material.
Tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
descriptions of material properties can be used to determine the directional dependence of that property. For a
monocrystalline In materials science, a single crystal (or single-crystal solid or monocrystalline solid) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absen ...
material, anisotropy is associated with the crystal symmetry in the sense that more symmetric crystal types have fewer independent coefficients in the tensor description of a given property. When a material is
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. S ...
, the directional dependence on properties is often related to the processing techniques it has undergone. A material with randomly oriented grains will be isotropic, whereas materials with
texture Texture may refer to: Science and technology * Image texture, the spatial arrangement of color or intensities in an image * Surface texture, the smoothness, roughness, or bumpiness of the surface of an object * Texture (roads), road surface c ...
will be often be anisotropic. Textured materials are often the result of processing techniques like
cold rolling In metalworking, rolling is a metal forming process in which metal stock is passed through one or more pairs of rolls to reduce the thickness, to make the thickness uniform, and/or to impart a desired mechanical property. The concept is simi ...
,
wire drawing Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through one or more dies. There are many applications for wire drawing, including electrical wiring, cables, tension-loaded structural compone ...
, and
heat treatment Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are a ...
. Mechanical properties of materials such as
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
,
ductility Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
,
yield strength In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and w ...
, and high-temperature creep rate, are often dependent on the direction of measurement. Fourth-rank
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
properties, like the elastic constants, are anisotropic, even for materials with cubic symmetry. The Young's modulus relates stress and strain when an isotropic material is elastically deformed; to describe elasticity in an anisotropic material,
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a ...
(or compliance) tensors are used instead. In metals, anisotropic elasticity behavior is present in all single crystals with three independent coefficients for cubic crystals, for example. For face-centered cubic materials such as nickel and copper, the stiffness is highest along the <111> direction, normal to the close-packed planes, and smallest parallel to <100>. Tungsten is so nearly isotropic at room temperature that it can be considered to have only two stiffness coefficients; aluminium is another metal that is nearly isotropic. For an isotropic material, G = E/ (1 + \nu) where G is the
shear modulus In materials science, shear modulus or modulus of rigidity, denoted by ''G'', or sometimes ''S'' or ''μ'', is a measure of the Elasticity (physics), elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear s ...
, E is the
Young's modulus Young's modulus (or the Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial compression. Youn ...
, and \nu is the material's
Poisson's ratio In materials science and solid mechanics, Poisson's ratio (symbol: ( nu)) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading. The value ...
. Therefore, for cubic materials, we can think of anisotropy, a_r , as the ratio between the empirically determined shear modulus for the cubic material and its (isotropic) equivalent: a_r = \frac = \frac \equiv \frac. The latter expression is known as the Zener ratio, a_r , where C_ refers to elastic constants in Voigt (vector-matrix) notation. For an isotropic material, the ratio is one. Limitation of the Zener ratio to cubic materials is waived in the Tensorial anisotropy index AT that takes into consideration all the 27 components of the fully anisotropic stiffness tensor. It is composed of two major parts A^Iand A^A , the former referring to components existing in cubic tensor and the latter in anisotropic tensor so that A^T = A^I+A^A . This first component includes the modified Zener ratio and additionally accounts for directional differences in the material, which exist in
orthotropic Orthotropic may refer to: * Orthotropic material is one that has different material properties or strengths in different orthogonal directions (e.g., glass-reinforced plastic, or wood) * Orthotropic deck, in bridge design, is one made from solid ...
material, for instance. The second component of this index A^A covers the influence of stiffness coefficients that are nonzero only for non-cubic materials and remains zero otherwise. Fiber-reinforced or layered
composite material A composite or composite material (also composition material) is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a ...
s exhibit anisotropic mechanical properties, due to orientation of the reinforcement material. In many fiber-reinforced composites like carbon fiber or glass fiber based composites, the weave of the material (e.g. unidirectional or plain weave) can determine the extent of the anisotropy of the bulk material. The tunability of orientation of the fibers allows for application-based designs of composite materials, depending on the direction of stresses applied onto the material. Amorphous materials such as glass and polymers are typically isotropic. Due to the highly randomized orientation of
macromolecule A macromolecule is a "molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass." Polymers are physi ...
s in polymeric materials,
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s are in general described as isotropic. However, mechanically gradient polymers can be engineered to have directionally dependent properties through processing techniques or introduction of anisotropy-inducing elements. Researchers have built composite materials with aligned fibers and voids to generate anisotropic
hydrogel A hydrogel is a Phase (matter), biphasic material, a mixture of Porosity, porous and Permeation, permeable solids and at least 10% of water or other interstitial fluid. The solid phase is a water Solubility, insoluble three dimensional network ...
s, in order to mimic hierarchically ordered biological soft matter. 3D printing, especially Fused Deposition Modeling, can introduce anisotropy into printed parts. This is because FDM is designed to extrude and print layers of thermoplastic materials. This creates materials that are strong when tensile stress is applied in parallel to the layers and weak when the material is perpendicular to the layers.


Microfabrication

Anisotropic etching techniques (such as
deep reactive-ion etching Deep reactive-ion etching (DRIE) is a special subclass of reactive-ion etching (RIE). It enables highly anisotropy, anisotropic etching (microfab), etch process used to create deep penetration, steep-sided holes and trenches in wafer (semiconducto ...
) are used in
microfabrication Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" ...
processes to create well defined microscopic features with a high
aspect ratio The aspect ratio of a geometry, geometric shape is the ratio of its sizes in different dimensions. For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, when the rectangl ...
. These features are commonly used in
MEMS MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
(microelectromechanical systems) and
microfluidic Microfluidics refers to a system that manipulates a small amount of fluids (10−9 to 10−18 liters) using small channels with sizes of ten to hundreds of micrometres. It is a multidisciplinary field that involves molecular analysis, molecular bi ...
devices, where the anisotropy of the features is needed to impart desired optical, electrical, or physical properties to the device. Anisotropic etching can also refer to certain chemical etchants used to etch a certain material preferentially over certain crystallographic planes (e.g., KOH etching of
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
00produces pyramid-like structures)


Neuroscience

Diffusion tensor imaging Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) is the use of specific MRI sequences as well as software that generates images from the resulting data that uses the diffusion of water molecules to generate contrast in MR images. It ...
is an
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and rad ...
technique that involves measuring the fractional anisotropy of the random motion (
Brownian motion Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). The traditional mathematical formulation of Brownian motion is that of the Wiener process, which is often called Brownian motion, even in mathematical ...
) of water molecules in the brain. Water molecules located in fiber tracts are more likely to move anisotropically, since they are restricted in their movement (they move more in the dimension parallel to the fiber tract rather than in the two dimensions orthogonal to it), whereas water molecules dispersed in the rest of the brain have less restricted movement and therefore display more isotropy. This difference in fractional anisotropy is exploited to create a map of the fiber tracts in the brains of the individual.


Remote sensing and radiative transfer modeling

Radiance In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiati ...
fields (see
Bidirectional reflectance distribution function The bidirectional reflectance distribution function (BRDF), symbol f_(\omega_,\, \omega_), is a function of four real variables that defines how light from a source is reflected off an Opacity (optics), opaque surface. It is employed in the optic ...
(BRDF)) from a reflective surface are often not isotropic in nature. This makes calculations of the total energy being reflected from any scene a difficult quantity to calculate. In
remote sensing Remote sensing is the acquisition of information about an physical object, object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring inform ...
applications, anisotropy functions can be derived for specific scenes, immensely simplifying the calculation of the net reflectance or (thereby) the net
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m−2 or W/m2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) ...
of a scene. For example, let the
BRDF The bidirectional reflectance distribution function (BRDF), symbol f_(\omega_,\, \omega_), is a function of four real variables that defines how light from a source is reflected off an Opacity (optics), opaque surface. It is employed in the optic ...
be \gamma(\Omega_i, \Omega_v) where 'i' denotes incident direction and 'v' denotes viewing direction (as if from a satellite or other instrument). And let P be the Planar Albedo, which represents the total reflectance from the scene. P(\Omega_i) = \int_ \gamma(\Omega_i, \Omega_v)\hat \cdot d\hat\Omega_v A(\Omega_i, \Omega_v) = \frac It is of interest because, with knowledge of the anisotropy function as defined, a measurement of the
BRDF The bidirectional reflectance distribution function (BRDF), symbol f_(\omega_,\, \omega_), is a function of four real variables that defines how light from a source is reflected off an Opacity (optics), opaque surface. It is employed in the optic ...
from a single viewing direction (say, \Omega_v) yields a measure of the total scene reflectance (planar
albedo Albedo ( ; ) is the fraction of sunlight that is Diffuse reflection, diffusely reflected by a body. It is measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects ...
) for that specific incident geometry (say, \Omega_i).


See also

*
Circular symmetry In geometry, circular symmetry is a type of continuous symmetry for a Plane (geometry), planar object that can be rotational symmetry, rotated by any arbitrary angle and map onto itself. Rotational circular symmetry is isomorphic with the circl ...
* *


References


External links


"Overview of Anisotropy"

DoITPoMS Teaching and Learning Package: "Introduction to Anisotropy"


{{Authority control Orientation (geometry) Asymmetry