HOME



picture info

Seismic Anisotropy
Seismic anisotropy is the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth. Description A material is said to be anisotropic if the value of one or more of its properties varies with direction. Anisotropy differs from the property called heterogeneity in that anisotropy is the variation in values with direction at a point while heterogeneity is the variation in values between two or more points. ''Seismic anisotropy'' can be defined as the dependence of seismic velocity on direction or upon angle. General anisotropy is described by a 4th order elasticity tensor with 21 independent elements. However, in practice observational studies are unable to distinguish all 21 elements, and anisotropy is usually simplified. In the simplest form, there are two main types of anisotropy, both of them are called transverse isotropy (it is called transverse isotropy because there is isotropy in either the horizontal or vertical plane) or polar anisotropy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anisotropic Media
Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical property, physical or list of materials properties#Mechanical properties, mechanical properties when measured along different axes, e.g. absorbance, refractive index, electrical resistivity and conductivity, conductivity, and tensile strength. An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its wood grain, grain than across it because of the directional non-uniformity of the grain (the grain is the same in one direction, not all directions). Fields of interest Computer graphics In the field of computer graphics, an anisotropic surface changes in appearance as it rotates about its normal (geometry), geometric normal, as is the case with velvet. Anisotropic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Wave Splitting
Shear wave splitting, also called seismic birefringence, is the phenomenon that occurs when a polarized shear wave enters an anisotropic medium. The incident shear wave splits into two polarized shear waves. Shear wave splitting is typically used as a tool for testing the anisotropy of an area of interest. These measurements reflect the degree of anisotropy and lead to a better understanding of the area's crack density and orientation or crystal alignment. We can think of the anisotropy of a particular area as a black box and the shear wave splitting measurements as a way of looking at what is in the box. Introduction An incident shear wave may enter an anisotropic medium from an isotropic media by encountering a change in the preferred orientation or character of the medium. When a polarized shear wave enters a new, anisotropic medium, it splits into two shear waves. One of these shear waves will be faster than the other and oriented parallel to the cracks or crystals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mantle (geology)
A mantle is a layer inside a planetary body bounded below by a Planetary core, core and above by a Crust (geology), crust. Mantles are made of Rock (geology), rock or Volatile (astrogeology), ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone planetary differentiation, differentiation by density. All Terrestrial planet, terrestrial planets (including Earth), half of the giant planets, specifically ice giants, a number of Asteroid, asteroids, and some planetary Natural satellite, moons have mantles. Examples Earth The Earth's mantle is a layer of Silicate minerals, silicate rock between the Crust (geology), crust and the Earth's outer core, outer core. Its mass of 4.01 × 1024 kg is 67% the mass of the Earth. It has a thickness of making up about 84% of Earth's volume. It is predominantly solid, but in Geologic time scale, geological time it behaves as a Viscosity, visc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Crust (geology)
In geology, the crust is the outermost solid shell of a planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be defined based on its phase (solid crust vs. liquid mantle). The crusts of Earth, Mercury, Venus, Mars, Io, the Moon and other planetary bodies formed via igneous processes and were later modified by erosion, impact cratering, volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust. These two types have different chemical compositions and physical properties and were formed by different geological processes. Types of crust Planetary geologists divide crust into three categories based on how and when it formed. Primary crust / primordial crust This is a planet's "original" crust. It forms from solidification of a magma ocean. Toward the end o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Elasticity
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental assumptions of linear elasticity are infinitesimal strains — meaning, "small" deformations — and linear relationships between the components of stress and strain — hence the "linear" in its name. Linear elasticity is valid only for stress states that do not produce yielding. Its assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis. Mathematical formulation Equations governing a linear elastic boundary value problem are based on three tensor partial differential equations for the balance of linear momentum and six in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gary M
Gary may refer to: *Gary (given name), a common masculine given name, including a list of people and fictional characters with the name Places ;Iran * Gary, Iran, Sistan and Baluchestan Province ;United States *Gary (Tampa), Florida *Gary, Indiana * Gary, Maryland * Gary, Minnesota * Gary, South Dakota *Gary, West Virginia * Gary – New Duluth, a neighborhood in Duluth, Minnesota * Gary Air Force Base, San Marcos, Texas * Gary City, Texas Ships * USS ''Gary'' (DE-61), a destroyer escort launched in 1943 * USS ''Gary'' (CL-147), scheduled to be a light cruiser, but canceled prior to construction in 1945 * USS ''Gary'' (FFG-51), a frigate, commissioned in 1984 * USS ''Thomas J. Gary'' (DE-326), a destroyer escort commissioned in 1943 People *Gary (given name), a common masculine given name, including a list of people and fictional characters with the name *Gary (surname), including a list of people with the name * Gary (rapper), South Korean rapper and entertainer * Gary (Argen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Elasticity
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental assumptions of linear elasticity are infinitesimal strains — meaning, "small" deformations — and linear relationships between the components of stress and strain — hence the "linear" in its name. Linear elasticity is valid only for stress states that do not produce yielding. Its assumptions are reasonable for many engineering materials and engineering design scenarios. Linear elasticity is therefore used extensively in structural analysis and engineering design, often with the aid of finite element analysis. Mathematical formulation Equations governing a linear elastic boundary value problem are based on three tensor partial differential equations for the balance of linear momentum and six in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Signal Velocity
The signal velocity is the speed at which a wave carries information. It describes how quickly a message can be communicated (using any particular method) between two separated parties. No signal velocity can exceed the speed of a light pulse in a vacuum (by special relativity). Signal velocity is usually equal to group velocity (the speed of a short "pulse" or of a wave-packet's middle or "envelope"). However, in a few special cases (e.g., media designed to amplify the front-most parts of a pulse and then attenuate the back section of the pulse), group velocity can exceed the speed of light in vacuum, while the signal velocity will still be less than or equal to the speed of light in vacuum. In electronic circuits, signal velocity is one member of a group of five closely related parameters. In these circuits, signals are usually treated as operating in TEM (Transverse ElectroMagnetic) mode. That is, the fields are perpendicular to the direction of transmission and perpendicul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elastic Modulus
An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: A stiffer material will have a higher elastic modulus. An elastic modulus has the form: :\delta \ \stackrel\ \frac where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original value of the parameter. Since strain is a dimensionless quantity, the units of \delta will be the same as the units of stress. Elastic constants and moduli Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hooke's Law
In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of the spring (i.e., its stiffness), and is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ("as the extension, so the force" or "the extension is proportional to the force"). Hooke states in the 1678 work that he was aware of the law since 1660. Hooke's equation holds (to some extent) in many other situations where an elastic body is deformed, such as wind blowing on a tall building, and a musician plucking a string of a guitar. An elastic body or material for which this equation can be assumed is said to be linear-elastic or Hookean. Hooke's law is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertical Seismic Profile
In geophysics, vertical seismic profile (VSP) is a technique of seismic measurements used for correlation with surface seismic data. The defining characteristic of a VSP (of which there are many types) is that either the energy source, or the detectors (or sometimes both) are in a borehole. In the most common type of VSP, hydrophones, or more often geophones or accelerometers, in the borehole record reflected seismic energy originating from a seismic source at the surface. There are numerous methods for acquiring a vertical seismic profile (VSP). Zero-offset VSPs (A) have sources close to the wellbore directly above receivers. Offset VSPs (B) have sources some distance from the receivers in the wellbore. Walkaway VSPs (C) feature a source that is moved to progressively farther offset and receivers held in a fixed location. Walk-above VSPs (D) accommodate the recording geometry of a deviated well, having each receiver in a different lateral position and the source directly above t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]