Algebra Of Smooth Functions
   HOME

TheInfoList



OR:

Algebra is a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
that deals with abstract
system A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its open system (systems theory), environment, is described by its boundaries, str ...
s, known as
algebraic structures In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
, and the manipulation of expressions within those systems. It is a generalization of
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
that introduces
variables Variable may refer to: Computer science * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed Mathematics * Variable (mathematics), a symbol that represents a quantity in a mathemat ...
and
algebraic operation In mathematics, a basic algebraic operation is any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). These o ...
s other than the standard arithmetic operations, such as
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
.
Elementary algebra Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variable (mathematics ...
is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables.
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
is a closely related field that investigates
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
s and combinations of them called ''
systems of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in ...
''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions.
Abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
studies algebraic structures, which consist of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
mathematical objects A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas. Commonly encountered mathematical objects include n ...
together with one or several operations defined on that set. It is a generalization of elementary and linear algebra since it allows mathematical objects other than numbers and non-arithmetic operations. It distinguishes between different types of algebraic structures, such as groups, rings, and
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
, based on the number of operations they use and the laws they follow, called
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
.
Universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
and
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
provide general frameworks to investigate abstract patterns that characterize different classes of algebraic structures. Algebraic methods were first studied in the
ancient period Ancient history is a time period from the beginning of writing and recorded human history through late antiquity. The span of recorded history is roughly 5,000 years, beginning with the development of Sumerian cuneiform script. Ancient h ...
to solve specific problems in fields like
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
. Subsequent mathematicians examined general techniques to solve equations independent of their specific applications. They described equations and their solutions using words and abbreviations until the 16th and 17th centuries when a rigorous symbolic formalism was developed. In the mid-19th century, the scope of algebra broadened beyond a
theory of equations In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equation (mathematics), equations defined by a polynomial. The main problem of the theory of equations was to know when an al ...
to cover diverse types of algebraic operations and structures. Algebra is relevant to many branches of mathematics, such as geometry,
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
,
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, and
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, and other fields of inquiry, like
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
and the empirical sciences.


Definition and etymology

Algebra is the branch of mathematics that studies
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s and the operations they use. An algebraic structure is a non-empty
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s, such as the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, together with algebraic operations defined on that set, like
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
. Algebra explores the laws, general characteristics, and types of algebraic structures. Within certain algebraic structures, it examines the use of
variables Variable may refer to: Computer science * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed Mathematics * Variable (mathematics), a symbol that represents a quantity in a mathemat ...
in
equations In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for e ...
and how to manipulate these equations. Algebra is often understood as a generalization of
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
. Arithmetic studies operations like addition,
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
, multiplication, and division, in a particular domain of numbers, such as the real numbers.
Elementary algebra Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variable (mathematics ...
constitutes the first level of abstraction. Like arithmetic, it restricts itself to specific types of numbers and operations. It generalizes these operations by allowing indefinite quantities in the form of variables in addition to numbers. A higher level of abstraction is found in
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, which is not limited to a particular domain and examines algebraic structures such as groups and rings. It extends beyond typical arithmetic operations by also covering other types of operations. Universal algebra is still more abstract in that it is not interested in specific algebraic structures but investigates the characteristics of algebraic structures in general. The term "algebra" is sometimes used in a more narrow sense to refer only to elementary algebra or only to abstract algebra. When used as a countable noun, an algebra is a specific type of algebraic structure that involves a
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
equipped with a certain type of binary operation. Depending on the context, "algebra" can also refer to other algebraic structures, like a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
or an
associative algebra In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a mult ...
. The word ''algebra'' comes from the
Arabic Arabic (, , or , ) is a Central Semitic languages, Central Semitic language of the Afroasiatic languages, Afroasiatic language family spoken primarily in the Arab world. The International Organization for Standardization (ISO) assigns lang ...
term (), which originally referred to the surgical treatment of
bonesetting Traditional bone-setting is a type of a folk medicine in which practitioners are engaged in joint manipulation. Before the advent of chiropractors, osteopaths, and physical therapists, bone-setters were the main providers of this type of treat ...
. In the 9th century, the term received a mathematical meaning when the Persian mathematician
Muhammad ibn Musa al-Khwarizmi Muhammad ibn Musa al-Khwarizmi , or simply al-Khwarizmi, was a mathematician active during the Islamic Golden Age, who produced Arabic-language works in mathematics, astronomy, and geography. Around 820, he worked at the House of Wisdom in B ...
employed it to describe a method of solving equations and used it in the title of a treatise on algebra, 'The Compendious Book on Calculation by Completion and Balancing''which was translated into Latin as . The word entered the English language in the 16th century from
Italian Italian(s) may refer to: * Anything of, from, or related to the people of Italy over the centuries ** Italians, a Romance ethnic group related to or simply a citizen of the Italian Republic or Italian Kingdom ** Italian language, a Romance languag ...
,
Spanish Spanish might refer to: * Items from or related to Spain: **Spaniards are a nation and ethnic group indigenous to Spain **Spanish language, spoken in Spain and many countries in the Americas **Spanish cuisine **Spanish history **Spanish culture ...
, and medieval
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
. Initially, its meaning was restricted to the
theory of equations In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equation (mathematics), equations defined by a polynomial. The main problem of the theory of equations was to know when an al ...
, that is, to the art of manipulating
polynomial equations In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x^5-3x+1=0 is an algebraic equation ...
in view of solving them. This changed in the 19th century when the scope of algebra broadened to cover the study of diverse types of algebraic operations and structures together with their underlying
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s, the laws they follow.


Major branches


Elementary algebra

Elementary algebra, also called school algebra, college algebra, and classical algebra, is the oldest and most basic form of algebra. It is a generalization of
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
that relies on
variables Variable may refer to: Computer science * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed Mathematics * Variable (mathematics), a symbol that represents a quantity in a mathemat ...
and examines how mathematical
statements Statement or statements may refer to: Common uses *Statement (computer science), the smallest standalone element of an imperative programming language * Statement (logic and semantics), declarative sentence that is either true or false *Statement, ...
may be transformed. Arithmetic is the study of numerical operations and investigates how numbers are combined and transformed using the arithmetic operations of
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, division,
exponentiation In mathematics, exponentiation, denoted , is an operation (mathematics), operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication ...
, extraction of
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusin ...
, and
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
. For example, the operation of addition combines two numbers, called the addends, into a third number, called the sum, as in Elementary algebra relies on the same operations while allowing variables in addition to regular numbers. Variables are
symbol A symbol is a mark, Sign (semiotics), sign, or word that indicates, signifies, or is understood as representing an idea, physical object, object, or wikt:relationship, relationship. Symbols allow people to go beyond what is known or seen by cr ...
s for unspecified or unknown quantities. They make it possible to state relationships for which one does not know the exact values and to express general laws that are true, independent of which numbers are used. For example, the
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
2 \times 3 = 3 \times 2 belongs to arithmetic and expresses an equality only for these specific numbers. By replacing the numbers with variables, it is possible to express a general law that applies to any possible combination of numbers, like the commutative property of multiplication, which is expressed in the equation
Algebraic expression In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers), variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number pow ...
s are formed by using arithmetic operations to combine variables and numbers. By convention, the lowercase letters , , and z represent variables. In some cases, subscripts are added to distinguish variables, as in , , and . The lowercase letters , , and c are usually used for
constants Constant or The Constant may refer to: Mathematics * Constant (mathematics), a non-varying value * Mathematical constant, a special number that arises naturally in mathematics, such as or Other concepts * Control variable or scientific const ...
and
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s. The expression 5x + 3 is an algebraic expression created by multiplying the number 5 with the variable x and adding the number 3 to the result. Other examples of algebraic expressions are 32xyz and Some algebraic expressions take the form of statements that relate two expressions to one another. An equation is a statement formed by comparing two expressions, saying that they are equal. This can be expressed using the
equals sign The equals sign (British English) or equal sign (American English), also known as the equality sign, is the mathematical symbol , which is used to indicate equality. In an equation it is placed between two expressions that have the same valu ...
(), as in .
Inequation In mathematics, an inequation is a statement that either an ''inequality'' (relations "greater than" and "less than", ) or a relation "not equal to" (≠) holds between two values. It is usually written in the form of a pair of expressions den ...
s involve a different type of comparison, saying that the two sides are different. This can be expressed using symbols such as the
less-than sign The less-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the left, , has been found in documents dated as far back as the 1560 ...
(), the
greater-than sign The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, , has been found in documents dated as far back as 1631 ...
(), and the inequality sign (). Unlike other expressions, statements can be true or false, and their
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in ...
usually depends on the values of the variables. For example, the statement x^2 = 4 is true if x is either 2 or −2 and false otherwise. Equations with variables can be divided into identity equations and conditional equations. Identity equations are true for all values that can be assigned to the variables, such as the equation . Conditional equations are only true for some values. For example, the equation x + 4 = 9 is only true if x is 5. The main goal of elementary algebra is to determine the values for which a statement is true. This can be achieved by transforming and manipulating statements according to certain rules. A key principle guiding this process is that whatever operation is applied to one side of an equation also needs to be done to the other side. For example, if one subtracts 5 from the left side of an equation one also needs to subtract 5 from the right side to balance both sides. The goal of these steps is usually to isolate the variable one is interested in on one side, a process known as solving the equation for that variable. For example, the equation x - 7 = 4 can be solved for x by adding 7 to both sides, which isolates x on the left side and results in the equation . There are many other techniques used to solve equations. Simplification is employed to replace a complicated expression with an equivalent simpler one. For example, the expression 7x - 3x can be replaced with the expression 4x since 7x - 3x = (7-3)x = 4x by the distributive property. For statements with several variables, substitution is a common technique to replace one variable with an equivalent expression that does not use this variable. For example, if one knows that y = 3x then one can simplify the expression 7xy to arrive at . In a similar way, if one knows the value of one variable one may be able to use it to determine the value of other variables. Algebraic equations can be interpreted geometrically to describe spatial figures in the form of a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discret ...
. To do so, the different variables in the equation are understood as
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
and the values that solve the equation are interpreted as points of a graph. For example, if x is set to zero in the equation , then y must be −1 for the equation to be true. This means that the (x, y)-pair (0, -1) is part of the graph of the equation. The (x, y)-pair , by contrast, does not solve the equation and is therefore not part of the graph. The graph encompasses the totality of (x, y)-pairs that solve the equation.


Polynomials

A polynomial is an expression consisting of one or more terms that are added or subtracted from each other, like . Each term is either a constant, a variable, or a product of a constant and variables. Each variable can be raised to a positive integer power. A monomial is a polynomial with one term while two- and three-term polynomials are called binomials and trinomials. The
degree of a polynomial In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus ...
is the maximal value (among its terms) of the sum of the exponents of the variables (4 in the above example). Polynomials of degree one are called ''linear polynomials''. Linear algebra studies systems of linear polynomials. A polynomial is said to be ''univariate'' or ''multivariate'', depending on whether it uses one or more variables.
Factorization In mathematics, factorization (or factorisation, see American and British English spelling differences#-ise, -ize (-isation, -ization), English spelling differences) or factoring consists of writing a number or another mathematical object as a p ...
is a method used to simplify polynomials, making it easier to analyze them and determine the values for which they evaluate to zero. Factorization consists of rewriting a polynomial as a product of several factors. For example, the polynomial x^2 - 3x - 10 can be factorized as . The polynomial as a whole is zero if and only if one of its factors is zero, i.e., if x is either −2 or 5. Before the 19th century, much of algebra was devoted to
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form P = 0, where ''P'' is a polynomial with coefficients in some field (mathematics), field, often the field of the rational numbers. For example, x^5-3x+1=0 is a ...
s, that is
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
s obtained by equating a polynomial to zero. The first attempts for solving polynomial equations were to express the solutions in terms of th roots. The solution of a second-degree polynomial equation of the form ax^2 + bx + c = 0 is given by the
quadratic formula In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions. Given a general quadr ...
x = \frac. Solutions for the degrees 3 and 4 are given by the
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
and quartic formulas. There are no general solutions for higher degrees, as proven in the 19th century by the
Abel–Ruffini theorem In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means t ...
. Even when general solutions do not exist, approximate solutions can be found by numerical tools like the
Newton–Raphson method In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a ...
. The
fundamental theorem of algebra The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
asserts that every univariate polynomial equation of positive degree with real or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
coefficients has at least one complex solution. Consequently, every polynomial of a positive degree can be factorized into linear polynomials. This theorem was proved at the beginning of the 19th century, but this does not close the problem since the theorem does not provide any way for computing the solutions.


Linear algebra

Linear algebra starts with the study of
systems of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in ...
. An equation is linear if it can be expressed in the form , where , , ..., a_n and b are constants. Examples are x_1 - 7x_2 + 3x_3 = 0 and . A ''system of linear equations'' is a set of linear equations for which one is interested in common solutions.
Matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
are rectangular arrays of values that have been originally introduced for having a compact and synthetic notation for systems of linear equations. For example, the system of equations \begin 9x_1 + 3x_2 - 13x_3 &= 0 \\ 2.3x_1 + 7x_3 &= 9 \\ -5x_1 - 17x_2 &= -3 \end can be written as AX=B, where , X and B are the matrices A=\begin9 & 3 & -13 \\ 2.3 & 0 & 7 \\ -5 & -17 & 0 \end, \quad X= \beginx_1 \\ x_2 \\ x_3 \end,\quad B = \begin0 \\ 9 \\ -3 \end. Under some conditions on the number of rows and columns, matrices can be added, multiplied, and sometimes inverted. All methods for solving linear systems may be expressed as matrix manipulations using these operations. For example, solving the above system consists of computing an inverted matrix A^ such that A^A = I, where I is the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
. Then, multiplying on the left both members of the above matrix equation by A^, one gets the solution of the system of linear equations as X=A^B. Methods of solving systems of linear equations range from the introductory, like substitution and elimination, to more advanced techniques using matrices, such as
Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of ...
, the
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can a ...
, and
LU decomposition In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The produ ...
. Some systems of equations are
inconsistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences o ...
, meaning that no solutions exist because the equations contradict each other. Consistent systems have either one unique solution or an infinite number of solutions. The study of
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s and
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
s form a large part of linear algebra. A vector space is an algebraic structure formed by a set with an addition that makes it an
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
and a
scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
that is compatible with addition (see
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
for details). A linear map is a function between vector spaces that is compatible with addition and scalar multiplication. In the case of
finite-dimensional vector space In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
s, vectors and linear maps can be represented by matrices. It follows that the theories of matrices and finite-dimensional vector spaces are essentially the same. In particular, vector spaces provide a third way for expressing and manipulating systems of linear equations. From this perspective, a matrix is a representation of a linear map: if one chooses a particular basis to describe the vectors being transformed, then the entries in the matrix give the results of applying the linear map to the basis vectors. Systems of equations can be interpreted as geometric figures. For systems with two variables, each equation represents a line in
two-dimensional space A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensiona ...
. The point where the two lines intersect is the solution of the full system because this is the only point that solves both the first and the second equation. For inconsistent systems, the two lines run parallel, meaning that there is no solution since they never intersect. If two equations are not independent then they describe the same line, meaning that every solution of one equation is also a solution of the other equation. These relations make it possible to seek solutions graphically by plotting the equations and determining where they intersect. The same principles also apply to systems of equations with more variables, with the difference being that the equations do not describe lines but higher dimensional figures. For instance, equations with three variables correspond to
planes Plane most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface * Plane (mathematics), generalizations of a geometrical plane Plane or planes may also refer to: Biology * Plane ...
in
three-dimensional space In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ('' coordinates'') are required to determine the position of a point. Most commonly, it is the three- ...
, and the points where all planes intersect solve the system of equations.


Abstract algebra

Abstract algebra, also called modern algebra, is the study of
algebraic structures In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
. An algebraic structure is a framework for understanding operations on
mathematical object A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a Glossary of mathematical symbols, symbol, and therefore can be involved in formulas. Commonly encounter ...
s, like the addition of numbers. While elementary algebra and linear algebra work within the confines of particular algebraic structures, abstract algebra takes a more general approach that compares how algebraic structures differ from each other and what types of algebraic structures there are, such as groups, rings, and
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
. The key difference between these types of algebraic structures lies in the number of operations they use and the laws they obey. In
mathematics education In contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out Scholarly method, scholarly research into the transfer of mathematical know ...
, abstract algebra refers to an advanced
undergraduate Undergraduate education is education conducted after secondary education and before postgraduate education, usually in a college or university. It typically includes all postsecondary programs up to the level of a bachelor's degree. For example, ...
course that mathematics majors take after completing courses in linear algebra. On a formal level, an algebraic structure is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of mathematical objects, called the underlying set, together with one or several operations. Abstract algebra is primarily interested in
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
s, which take any two objects from the underlying set as inputs and map them to another object from this set as output. For example, the algebraic structure \langle \N, + \rangle has the
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
() as the underlying set and addition () as its binary operation. The underlying set can contain mathematical objects other than numbers, and the operations are not restricted to regular arithmetic operations. For instance, the underlying set of the
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
of a geometric object is made up of
geometric transformation In mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning, such as preserving distances, angles, or ratios (scale). More specifically, it is a function wh ...
s, such as
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
s, under which the object remains unchanged. Its binary operation is
function composition In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \c ...
, which takes two transformations as input and has the transformation resulting from applying the first transformation followed by the second as its output.


Group theory

Abstract algebra classifies algebraic structures based on the laws or
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s that its operations obey and the number of operations it uses. One of the most basic types is a group, which has one operation and requires that this operation is
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
and has an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
and
inverse element In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
s. An operation is associative if the order of several applications does not matter, i.e., if is the same as a \circ (b \circ c) for all elements. An operation has an identity element or a neutral element if one element ''e'' exists that does not change the value of any other element, i.e., if . An operation has inverse elements if for any element a there exists a reciprocal element a^ that undoes . If an element operates on its inverse then the result is the neutral element ''e'', expressed formally as . Every algebraic structure that fulfills these requirements is a group. For example, \langle \Z, + \rangle is a group formed by the set of
integers An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
together with the operation of addition. The neutral element is 0 and the inverse element of any number a is The natural numbers with addition, by contrast, do not form a group since they contain only positive integers and therefore lack inverse elements.
Group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
examines the nature of groups, with basic theorems such as the fundamental theorem of finite abelian groups and the
Feit–Thompson theorem In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved in the early 1960s by Walter Feit and John Griggs Thompson. History In the early 20th century, Wil ...
. The latter was a key early step in one of the most important mathematical achievements of the 20th century: the collaborative effort, taking up more than 10,000 journal pages and mostly published between 1960 and 2004, that culminated in a complete
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
.


Ring theory and field theory

A ring is an algebraic structure with two operations that work similarly to the addition and multiplication of numbers and are named and generally denoted similarly. A ring is a
commutative group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commuta ...
under addition: the addition of the ring is associative, commutative, and has an identity element and inverse elements. The multiplication is associative and distributive with respect to addition; that is, a (b + c) = a b + a c and (b + c) a = b a + c a. Moreover, multiplication is associative and has an
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
generally denoted as . Multiplication needs not to be commutative; if it is commutative, one has a
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
. The
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
() is one of the simplest commutative rings. A ''
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
'' is a commutative ring such that and each nonzero element has a
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
. The ring of integers does not form a field because it lacks multiplicative inverses. For example, the multiplicative inverse of 7 is , which is not an integer. The
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction (mathematics), fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for examp ...
, the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
, and the
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
each form a field with the operations of addition and multiplication. Ring theory is the study of rings, exploring concepts such as
subring In mathematics, a subring of a ring is a subset of that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and that shares the same multiplicative identity as .In general, not all s ...
s,
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
s,
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
s, and ideals as well as theorems such as
Hilbert's basis theorem In mathematics Hilbert's basis theorem asserts that every ideal (ring theory), ideal of a polynomial ring over a field (mathematics), field has a finite generating set of an ideal, generating set (a finite ''basis'' in Hilbert's terminology). In ...
. Field theory is concerned with fields, examining
field extension In mathematics, particularly in algebra, a field extension is a pair of fields K \subseteq L, such that the operations of ''K'' are those of ''L'' restricted to ''K''. In this case, ''L'' is an extension field of ''K'' and ''K'' is a subfield of ...
s,
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
s, and
finite fields In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
.
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
explores the relation between field theory and group theory, relying on the
fundamental theorem of Galois theory In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most bas ...
.


Theories of interrelations among structures

Besides groups, rings, and fields, there are many other algebraic structures studied by algebra. They include magmas,
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
s,
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
s,
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s,
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
s, modules, lattices,
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s,
algebras over a field In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition ...
, and
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
and
non-associative algebras A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if ...
. They differ from each other regarding the types of objects they describe and the requirements that their operations fulfill. Many are related to each other in that a basic structure can be turned into a more specialized structure by adding constraints. For example, a magma becomes a semigroup if its operation is associative.
Homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
s are tools to examine structural features by comparing two algebraic structures. A homomorphism is a function from the underlying set of one algebraic structure to the underlying set of another algebraic structure that preserves certain structural characteristics. If the two algebraic structures use binary operations and have the form \langle A, \circ \rangle and \langle B, \star \rangle then the function h: A \to B is a homomorphism if it fulfills the following requirement: . The existence of a homomorphism reveals that the operation \star in the second algebraic structure plays the same role as the operation \circ does in the first algebraic structure.
Isomorphisms In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them ...
are a special type of homomorphism that indicates a high degree of similarity between two algebraic structures. An isomorphism is a
bijective In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
homomorphism, meaning that it establishes a one-to-one relationship between the elements of the two algebraic structures. This implies that every element of the first algebraic structure is mapped to one unique element in the second structure without any unmapped elements in the second structure. Another tool of comparison is the relation between an algebraic structure and its
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear opera ...
. The algebraic structure and its subalgebra use the same operations, which follow the same axioms. The only difference is that the underlying set of the subalgebra is a subset of the underlying set of the algebraic structure. All operations in the subalgebra are required to be closed in its underlying set, meaning that they only produce elements that belong to this set. For example, the set of
even integers In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The ...
together with addition is a subalgebra of the full set of integers together with addition. This is the case because the sum of two even numbers is again an even number. But the set of odd integers together with addition is not a subalgebra because it is not closed: adding two odd numbers produces an even number, which is not part of the chosen subset.
Universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of stud ...
is the study of algebraic structures in general. As part of its general perspective, it is not concerned with the specific elements that make up the underlying sets and considers operations with more than two inputs, such as
ternary operation In mathematics, a ternary operation is an ''n''- ary operation with ''n'' = 3. A ternary operation on a set ''A'' takes any given three elements of ''A'' and combines them to form a single element of ''A''. In computer science, a ternary operato ...
s. It provides a framework for investigating what structural features different algebraic structures have in common. One of those structural features concerns the identities that are true in different algebraic structures. In this context, an identity is a
universal Universal is the adjective for universe. Universal may also refer to: Companies * NBCUniversal, a media and entertainment company that is a subsidiary of Comcast ** Universal Animation Studios, an American Animation studio, and a subsidiary of N ...
equation or an equation that is true for all elements of the underlying set. For example, commutativity is a universal equation that states that a \circ b is identical to b \circ a for all elements. A
variety Variety may refer to: Arts and entertainment Entertainment formats * Variety (radio) * Variety show, in theater and television Films * ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont * ''Variety'' (1935 film), ...
is a class of all algebraic structures that satisfy certain identities. For example, if two algebraic structures satisfy commutativity then they are both part of the corresponding variety.
Category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
examines how mathematical objects are related to each other using the concept of
categories Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) *Category (Vais ...
. A category is a collection of objects together with a collection of
morphisms In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
or "arrows" between those objects. These two collections must satisfy certain conditions. For example, morphisms can be joined, or ''composed'': if there exists a morphism from object a to object , and another morphism from object b to object , then there must also exist one from object a to object . Composition of morphisms is required to be associative, and there must be an "identity morphism" for every object. Categories are widely used in contemporary mathematics since they provide a unifying framework to describe and analyze many fundamental mathematical concepts. For example, sets can be described with the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
, and any group can be regarded as the morphisms of a category with just one object.


History

The origin of algebra lies in attempts to solve mathematical problems involving arithmetic calculations and unknown quantities. These developments happened in the ancient period in
Babylonia Babylonia (; , ) was an Ancient history, ancient Akkadian language, Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Kuwait, Syria and Iran). It emerged as a ...
,
Egypt Egypt ( , ), officially the Arab Republic of Egypt, is a country spanning the Northeast Africa, northeast corner of Africa and Western Asia, southwest corner of Asia via the Sinai Peninsula. It is bordered by the Mediterranean Sea to northe ...
,
Greece Greece, officially the Hellenic Republic, is a country in Southeast Europe. Located on the southern tip of the Balkan peninsula, it shares land borders with Albania to the northwest, North Macedonia and Bulgaria to the north, and Turkey to th ...
,
China China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
, and
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
. One of the earliest documents on algebraic problems is the
Rhind Mathematical Papyrus The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057, pBM 10058, and Brooklyn Museum 37.1784Ea-b) is one of the best known examples of ancient Egyptian mathematics. It is one of two well-known mathematical papyri ...
from ancient Egypt, which was written around 1650 BCE. It discusses solutions to
linear equations In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficie ...
, as expressed in problems like "A quantity; its fourth is added to it. It becomes fifteen. What is the quantity?" Babylonian clay tablets from around the same time explain methods to solve linear and quadratic polynomial equations, such as the method of
completing the square In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of and . In terms of a new quantity , this expression is a quadratic polynomial with no linear term. By s ...
. Many of these insights found their way to the ancient Greeks. Starting in the 6th century BCE, their main interest was geometry rather than algebra, but they employed algebraic methods to solve geometric problems. For example, they studied geometric figures while taking their lengths and areas as unknown quantities to be determined, as exemplified in
Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
' formulation of the
difference of two squares In elementary algebra, a difference of two squares is one squared number (the number multiplied by itself) subtracted from another squared number. Every difference of squares may be factored as the product of the sum of the two numbers and the ...
method and later in Euclid's ''Elements''. In the 3rd century CE,
Diophantus Diophantus of Alexandria () (; ) was a Greek mathematician who was the author of the '' Arithmetica'' in thirteen books, ten of which are still extant, made up of arithmetical problems that are solved through algebraic equations. Although Jose ...
provided a detailed treatment of how to solve algebraic equations in a series of books called ''
Arithmetica Diophantus of Alexandria () (; ) was a Greek mathematics, Greek mathematician who was the author of the ''Arithmetica'' in thirteen books, ten of which are still extant, made up of arithmetical problems that are solved through algebraic equations ...
''. He was the first to experiment with symbolic notation to express polynomials. Diophantus's work influenced Arab development of algebra with many of his methods reflected in the concepts and techniques used in medieval Arabic algebra. In ancient China, ''
The Nine Chapters on the Mathematical Art ''The Nine Chapters on the Mathematical Art'' is a Chinese mathematics book, composed by several generations of scholars from the 10th–2nd century BCE, its latest stage being from the 1st century CE. This book is one of the earliest surviving ...
'', a book composed over the period spanning from the 10th century BCE to the 2nd century CE, explored various techniques for solving algebraic equations, including the use of matrix-like constructs. There is no unanimity of opinion as to whether these early developments are part of algebra or only precursors. They offered solutions to algebraic problems but did not conceive them in an abstract and general manner, focusing instead on specific cases and applications. This changed with the Persian mathematician
al-Khwarizmi Muhammad ibn Musa al-Khwarizmi , or simply al-Khwarizmi, was a mathematician active during the Islamic Golden Age, who produced Arabic-language works in mathematics, astronomy, and geography. Around 820, he worked at the House of Wisdom in B ...
, who published his ''
The Compendious Book on Calculation by Completion and Balancing ''The Concise Book of Calculation by Restoration and Balancing'' (, ;} or ), commonly abbreviated ''Al-Jabr'' or ''Algebra'' (Arabic: ), is an Arabic mathematics, Arabic mathematical treatise on algebra written in Baghdad around 820 by the Pers ...
'' in 825 CE. It presents the first detailed treatment of general methods that can be used to manipulate linear and quadratic equations by "reducing" and "balancing" both sides. Other influential contributions to algebra came from the Arab mathematician
Thābit ibn Qurra Thābit ibn Qurra (full name: , , ; 826 or 836 – February 19, 901), was a scholar known for his work in mathematics, medicine, astronomy, and translation. He lived in Baghdad in the second half of the ninth century during the time of the Abba ...
also in the 9th century and the Persian mathematician
Omar Khayyam Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīshābūrī (18 May 1048 – 4 December 1131) (Persian language, Persian: غیاث الدین ابوالفتح عمر بن ابراهیم خیام نیشابورﻯ), commonly known as Omar ...
in the 11th and 12th centuries. In India,
Brahmagupta Brahmagupta ( – ) was an Indian Indian mathematics, mathematician and Indian astronomy, astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established Siddhanta, do ...
investigated how to solve quadratic equations and systems of equations with several variables in the 7th century CE. Among his innovations were the use of zero and negative numbers in algebraic equations. The Indian mathematicians
Mahāvīra Mahavira (Devanagari: महावीर, ), also known as Vardhamana (Devanagari: वर्धमान, ), was the 24th ''Tirthankara'' (Supreme Preacher and Ford Maker) of Jainism. Although the dates and most historical details of his lif ...
in the 9th century and
Bhāskara II Bhāskara II ('; 1114–1185), also known as Bhāskarāchārya (), was an Indian people, Indian polymath, Indian mathematicians, mathematician, astronomer and engineer. From verses in his main work, Siddhānta Śiromaṇi, it can be inferre ...
in the 12th century further refined Brahmagupta's methods and concepts. In 1247, the Chinese mathematician
Qin Jiushao Qin Jiushao (, ca. 1202–1261), courtesy name Daogu (道古), was a Chinese mathematician, meteorologist, inventor, politician, and writer. He is credited for discovering Horner's method as well as inventing Tianchi basins, a type of rain gau ...
wrote the ''
Mathematical Treatise in Nine Sections The ''Mathematical Treatise in Nine Sections'' () is a mathematical text written by Chinese Southern Song dynasty mathematician Qin Jiushao in the year 1247. The mathematical text has a wide range of topics and is taken from all aspects of th ...
'', which includes an algorithm for the numerical evaluation of polynomials, including polynomials of higher degrees. The Italian mathematician
Fibonacci Leonardo Bonacci ( – ), commonly known as Fibonacci, was an Italians, Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages". The name he is commonly called, ''Fibonacci ...
brought al-Khwarizmi's ideas and techniques to Europe in books including his ''
Liber Abaci The or (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic n ...
''. In 1545, the Italian polymath
Gerolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; ; ; 24 September 1501– 21 September 1576) was an Italian polymath whose interests and proficiencies ranged through those of mathematician, physician, biologist, physicist, chemist, astrologer, as ...
published his book '' Ars Magna'', which covered many topics in algebra, discussed
imaginary numbers An imaginary number is the product of a real number and the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is ...
, and was the first to present general methods for solving
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
and
quartic equation In mathematics, a quartic equation is one which can be expressed as a ''quartic function'' equaling zero. The general form of a quartic equation is :ax^4+bx^3+cx^2+dx+e=0 \, where ''a'' ≠ 0. The quartic is the highest order polynom ...
s. In the 16th and 17th centuries, the French mathematicians
François Viète François Viète (; 1540 – 23 February 1603), known in Latin as Franciscus Vieta, was a French people, French mathematician whose work on new algebra was an important step towards modern algebra, due to his innovative use of letters as par ...
and
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
introduced letters and symbols to denote variables and operations, making it possible to express equations in an concise and abstract manner. Their predecessors had relied on verbal descriptions of problems and solutions. Some historians see this development as a key turning point in the history of algebra and consider what came before it as the prehistory of algebra because it lacked the abstract nature based on symbolic manipulation. In the 17th and 18th centuries, many attempts were made to find general solutions to polynomials of degree five and higher. All of them failed. At the end of the 18th century, the German mathematician
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
proved the
fundamental theorem of algebra The fundamental theorem of algebra, also called d'Alembert's theorem or the d'Alembert–Gauss theorem, states that every non-constant polynomial, constant single-variable polynomial with Complex number, complex coefficients has at least one comp ...
, which describes the existence of zeros of polynomials of any degree without providing a general solution. At the beginning of the 19th century, the Italian mathematician
Paolo Ruffini Paolo Ruffini (22 September 1765 – 10 May 1822) was an Italian mathematician and philosopher. Education and career By 1788 he had earned university degrees in philosophy, medicine/surgery and mathematics. His works include developments in a ...
and the Norwegian mathematician
Niels Henrik Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
were able to show that no general solution exists for polynomials of degree five and higher. In response to and shortly after their findings, the French mathematician
Évariste Galois Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by Nth root, ...
developed what came later to be known as
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
, which offered a more in-depth analysis of the solutions of polynomials while also laying the foundation of
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
. Mathematicians soon realized the relevance of group theory to other fields and applied it to disciplines like geometry and number theory. Starting in the mid-19th century, interest in algebra shifted from the study of polynomials associated with elementary algebra towards a more general inquiry into algebraic structures, marking the emergence of
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
. This approach explored the axiomatic basis of arbitrary algebraic operations. The invention of new algebraic systems based on different operations and elements accompanied this development, such as
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
,
vector algebra In mathematics, vector algebra may mean: * The operations of vector addition and scalar multiplication of a vector space * The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclid ...
, and
matrix algebra In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication. The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'') (alterna ...
. Influential early developments in abstract algebra were made by the German mathematicians
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
,
Ernst Steinitz Ernst Steinitz (13 June 1871 – 29 September 1928) was a German mathematician. Biography Steinitz was born in Laurahütte ( Siemianowice Śląskie), Silesia, Germany (now in Poland), the son of Sigismund Steinitz, a Jewish coal merchant, and ...
, and
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
as well as the Austrian mathematician
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrians, Austrian mathematician of Armenians, Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number t ...
. They researched different forms of algebraic structures and categorized them based on their underlying axioms into types, like groups, rings, and fields. The idea of the even more general approach associated with universal algebra was conceived by the English mathematician
Alfred North Whitehead Alfred North Whitehead (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He created the philosophical school known as process philosophy, which has been applied in a wide variety of disciplines, inclu ...
in his 1898 book ''A Treatise on Universal Algebra''. Starting in the 1930s, the American mathematician
Garrett Birkhoff Garrett Birkhoff (January 19, 1911 – November 22, 1996) was an American mathematician. He is best known for his work in lattice theory. The mathematician George Birkhoff (1884–1944) was his father. Life The son of the mathematician Ge ...
expanded these ideas and developed many of the foundational concepts of this field. The invention of universal algebra led to the emergence of various new areas focused on the algebraization of mathematicsthat is, the application of algebraic methods to other branches of mathematics. Topological algebra arose in the early 20th century, studying algebraic structures such as
topological groups In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures t ...
and
Lie groups In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas ...
. In the 1940s and 50s,
homological algebra Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precurs ...
emerged, employing algebraic techniques to study homology. Around the same time,
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
was developed and has since played a key role in the
foundations of mathematics Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
. Other developments were the formulation of
model theory In mathematical logic, model theory is the study of the relationship between theory (mathematical logic), formal theories (a collection of Sentence (mathematical logic), sentences in a formal language expressing statements about a Structure (mat ...
and the study of
free algebra In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the ...
s.


Applications

The influence of algebra is wide-reaching, both within mathematics and in its applications to other fields. The algebraization of mathematics is the process of applying algebraic methods and principles to other
branches of mathematics Mathematics is a broad subject that is commonly divided in many areas or branches that may be defined by List of mathematical objects, their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of n ...
, such as
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
,
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
,
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, and
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
. It happens by employing symbols in the form of variables to express mathematical insights on a more general level, allowing mathematicians to develop formal models describing how objects interact and relate to each other. One application, found in geometry, is the use of algebraic statements to describe geometric figures. For example, the equation y = 3x - 7 describes a line in two-dimensional space while the equation x^2 + y^2 + z^2 = 1 corresponds to a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
in three-dimensional space. Of special interest to
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
are
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, which are solutions to
systems of polynomial equations A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations where the are polynomials in several variables, say , over some field . A ''solution'' of a polynomial system is a set of values for the ...
that can be used to describe more complex geometric figures. Algebraic reasoning can also solve geometric problems. For example, one can determine whether and where the line described by y = x + 1 intersects with the circle described by x^2 + y^2 = 25 by solving the system of equations made up of these two equations. Topology studies the properties of geometric figures or
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s that are preserved under operations of
continuous deformation In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
.
Algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
relies on algebraic theories such as
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
to classify topological spaces. For example,
homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about Loop (topology), loops in a Mathematic ...
classify topological spaces based on the existence of loops or
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
in them. Number theory is concerned with the properties of and relations between integers.
Algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
applies algebraic methods and principles to this field of inquiry. Examples are the use of algebraic expressions to describe general laws, like
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases ...
, and of algebraic structures to analyze the behavior of numbers, such as the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often de ...
. The related field of
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
uses algebraic techniques to solve problems related to counting, arrangement, and combination of discrete objects. An example in
algebraic combinatorics Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algeb ...
is the application of group theory to analyze
graphs Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties * Graph (topology), a topological space resembling a graph in the sense of discre ...
and symmetries. The insights of algebra are also relevant to calculus, which uses mathematical expressions to examine
rates of change In mathematics, a rate is the quotient of two quantities, often represented as a fraction. If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed sy ...
and accumulation. It relies on algebra, for instance, to understand how these expressions can be transformed and what role variables play in them.
Algebraic logic In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with Free variables and bound variables, free variables. What is now usually called classical algebraic logic focuses on the identification and algebraic de ...
employs the methods of algebra to describe and analyze the structures and patterns that underlie
logical reasoning Logical reasoning is a mind, mental Action (philosophy), activity that aims to arrive at a Logical consequence, conclusion in a Rigour, rigorous way. It happens in the form of inferences or arguments by starting from a set of premises and reason ...
, exploring both the relevant mathematical structures themselves and their application to concrete problems of logic. It includes the study of
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
to describe
propositional logic The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contra ...
as well as the formulation and analysis of algebraic structures corresponding to more complex systems of logic. Algebraic methods are also commonly employed in other areas, like the natural sciences. For example, they are used to express
scientific laws Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) ...
and solve equations in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, and
biology Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, History of life, origin, evolution, and ...
. Similar applications are found in fields like
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
,
geography Geography (from Ancient Greek ; combining 'Earth' and 'write', literally 'Earth writing') is the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding o ...
,
engineering Engineering is the practice of using natural science, mathematics, and the engineering design process to Problem solving#Engineering, solve problems within technology, increase efficiency and productivity, and improve Systems engineering, s ...
(including
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
and
robotics Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots. Within mechanical engineering, robotics is the design and construction of the physical structures of robots, while in computer s ...
), and
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
to express relationships, solve problems, and model systems. Linear algebra plays a central role in
artificial intelligence Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of re ...
and
machine learning Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task ( ...
, for instance, by enabling the efficient processing and analysis of large
dataset A data set (or dataset) is a collection of data. In the case of tabular data, a data set corresponds to one or more database tables, where every column of a table represents a particular variable, and each row corresponds to a given record o ...
s. Various fields rely on algebraic structures investigated by abstract algebra. For example, physical sciences like
crystallography Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
and
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
make extensive use of group theory, which is also employed to study puzzles such as
Sudoku Sudoku (; ; originally called Number Place) is a logic puzzle, logic-based, combinatorics, combinatorial number-placement puzzle. In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that each column, each row, and ...
and Rubik's cubes, and
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a ...
. Both
coding theory Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and computer data storage, data sto ...
and
cryptology Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More gener ...
rely on abstract algebra to solve problems associated with
data transmission Data communication, including data transmission and data reception, is the transfer of data, signal transmission, transmitted and received over a Point-to-point (telecommunications), point-to-point or point-to-multipoint communication chann ...
, like avoiding the effects of
noise Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrat ...
and ensuring
data security Data security or data protection means protecting digital data, such as those in a database, from destructive forces and from the unwanted actions of unauthorized users, such as a cyberattack or a data breach. Technologies Disk encryption ...
.


Education

Algebra education mostly focuses on elementary algebra, which is one of the reasons why elementary algebra is also called school algebra. It is usually not introduced until
secondary education Secondary education is the education level following primary education and preceding tertiary education. Level 2 or ''lower secondary education'' (less commonly ''junior secondary education'') is considered the second and final phase of basic e ...
since it requires mastery of the fundamentals of arithmetic while posing new cognitive challenges associated with abstract reasoning and generalization. It aims to familiarize students with the formal side of mathematics by helping them understand mathematical symbolism, for example, how variables can be used to represent unknown quantities. An additional difficulty for students lies in the fact that, unlike arithmetic calculations, algebraic expressions are often difficult to solve directly. Instead, students need to learn how to transform them according to certain laws, often to determine an unknown quantity. Some tools to introduce students to the abstract side of algebra rely on concrete models and visualizations of equations, including geometric analogies, manipulatives including sticks or cups, and "function machines" representing equations as
flow diagram Flow diagram is a diagram representing a flow or set of dynamic relationships in a system. The term flow diagram is also used as a synonym for flowchart, and sometimes as a counterpart of the flowchart.Harris. (1999, p. 156) Flow diagrams ...
s. One method uses balance scales as a pictorial approach to help students grasp basic problems of algebra. The mass of some objects on the scale is unknown and represents variables. Solving an equation corresponds to adding and removing objects on both sides in such a way that the sides stay in balance until the only object remaining on one side is the object of unknown mass. Word problems are another tool to show how algebra is applied to real-life situations. For example, students may be presented with a situation in which Naomi's brother has twice as many apples as Naomi. Given that both together have twelve apples, students are then asked to find an algebraic equation that describes this situation () and to determine how many apples Naomi has At the university level, mathematics students encounter advanced algebra topics from linear and abstract algebra. Initial
undergraduate Undergraduate education is education conducted after secondary education and before postgraduate education, usually in a college or university. It typically includes all postsecondary programs up to the level of a bachelor's degree. For example, ...
courses in linear algebra focus on matrices, vector spaces, and linear maps. Upon completing them, students are usually introduced to abstract algebra, where they learn about algebraic structures like groups, rings, and fields, as well as the relations between them. The curriculum typically also covers specific instances of algebraic structures, such as the systems of rational numbers, the real numbers, and the polynomials.


See also

* * * * * * * * *


References


Notes


Citations


Sources

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *


External links

{{Authority control