3 (three) is a
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers ...
,
numeral
A numeral is a figure, symbol, or group of figures or symbols denoting a number. It may refer to:
* Numeral system used in mathematics
* Numeral (linguistics), a part of speech denoting numbers (e.g. ''one'' and ''first'' in English)
* Numerical d ...
and
digit
Digit may refer to:
Mathematics and science
* Numerical digit, as used in mathematics or computer science
** Hindu-Arabic numerals, the most common modern representation of numerical digits
* Digit (anatomy), the most distal part of a limb, such ...
. It is the
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
following
2 and preceding
4, and is the smallest odd
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
and the only prime preceding a
square number
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as .
The u ...
. It has religious or cultural significance in many societies.
Evolution of the Arabic digit
The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and
Chinese numerals
Chinese numerals are words and characters used to denote numbers in Chinese.
Today, speakers of Chinese use three written numeral systems: the system of Arabic numerals used worldwide, and two indigenous systems. The more familiar indigenous s ...
) that are still in use. That was also the original representation of 3 in the
Brahmic
The Brahmic scripts, also known as Indic scripts, are a family of abugida writing systems. They are used throughout the Indian subcontinent, Southeast Asia and parts of East Asia. They are descended from the Brahmi script of ancient India ...
(Indian) numerical notation, its earliest forms aligned vertically.
However, during the
Gupta Empire
The Gupta Empire was an ancient Indian empire which existed from the early 4th century CE to late 6th century CE. At its zenith, from approximately 319 to 467 CE, it covered much of the Indian subcontinent. This period is considered as the Go ...
the sign was modified by the addition of a curve on each line. The
Nāgarī script
The Nāgarī script or Northern Nagari of Kashi is the ancestor of Devanagari, Nandinagari and other variants, and was first used to write Prakrit and Sanskrit. The term is sometimes used as a synonym for Devanagari script.Kathleen Kuiper (2010 ...
rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३.
The Indian digits spread to the
Caliphate
A caliphate or khilāfah ( ar, خِلَافَة, ) is an institution or public office under the leadership of an Islamic steward with the title of caliph (; ar, خَلِيفَة , ), a person considered a political-religious successor to th ...
in the 9th century. The bottom stroke was dropped around the 10th century in the western parts of the Caliphate, such as the
Maghreb
The Maghreb (; ar, الْمَغْرِب, al-Maghrib, lit=the west), also known as the Arab Maghreb ( ar, المغرب العربي) and Northwest Africa, is the western part of North Africa and the Arab world. The region includes Algeria, ...
and
Al-Andalus
Al-Andalus translit. ; an, al-Andalus; ast, al-Ándalus; eu, al-Andalus; ber, ⴰⵏⴷⴰⵍⵓⵙ, label= Berber, translit=Andalus; ca, al-Àndalus; gl, al-Andalus; oc, Al Andalús; pt, al-Ândalus; es, al-Ándalus () was the Mus ...
, when a distinct variant ("Western Arabic") of the digit symbols developed, including modern Western 3. In contrast, the Eastern Arabs retained and enlarged that stroke, rotating the digit once more to yield the modern ("Eastern")
Arabic
Arabic (, ' ; , ' or ) is a Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C. E.Watson; Walte ...
digit "٣".
In most modern Western
typeface
A typeface (or font family) is the design of lettering that can include variations in size, weight (e.g. bold), slope (e.g. italic), width (e.g. condensed), and so on. Each of these variations of the typeface is a font.
There are thousands ...
s, the digit 3, like the other
decimal digit
A numerical digit (often shortened to just digit) is a single symbol used alone (such as "2") or in combinations (such as "25"), to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits (Latin ...
s, has the height of a
capital letter
Letter case is the distinction between the letters that are in larger uppercase or capitals (or more formally ''majuscule'') and smaller lowercase (or more formally ''minuscule'') in the written representation of certain languages. The writing ...
, and sits on the
baseline
A baseline is a line that is a base for measurement or for construction.
The word baseline may refer to:
* Baseline (configuration management), the process of managing change
* Baseline (sea), the starting point for delimiting a coastal state' ...
. In typefaces with
text figures
Text figures (also known as non-lining, lowercase, old style, ranging, hanging, medieval, billing, or antique figures or numerals) are numerals designed with varying heights in a fashion that resembles a typical line of running text, hence the ...
, on the other hand, the glyph usually has the height of a
lowercase letter
Letter case is the distinction between the letters that are in larger uppercase or capitals (or more formally ''majuscule'') and smaller lowercase (or more formally ''minuscule'') in the written representation of certain languages. The writing ...
"x" and a
descender
In typography and handwriting, a descender is the portion of a letter that extends below the baseline of a font.
For example, in the letter ''y'', the descender is the "tail", or that portion of the diagonal line which lies below the ''v'' ...
: "

". In some
French text-figure typefaces, though, it has an
ascender instead of a descender.
A common graphic variant of the digit three has a flat top, similar to the letter
Ʒ (ezh). This form is sometimes used to prevent falsifying a 3 as an 8. It is found on
UPC-A
The Universal Product Code (UPC or UPC code) is a barcode symbology that is widely used worldwide for tracking trade items in stores.
UPC (technically refers to UPC-A) consists of 12 digits that are uniquely assigned to each trade item. Along w ...
barcodes and
standard 52-card deck
The standard 52-card deck of French-suited playing cards is the most common pack of playing cards used today. In English-speaking countries it is the only traditional pack used for playing cards; in many countries of the world, however, it is use ...
s.
Mathematics
3 is the second smallest
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
and the first
odd
Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric.
Odd may also refer to:
Acronym
* ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
prime number. It is the first
unique prime
The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum, as Leonhard Euler proved in 1737.
Like all rational numbers, the reciprocals of primes have repeating decimal repres ...
, such that the
period length
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to des ...
value of
1 of the
decimal expansion
A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator:
r = b_k b_\ldots b_0.a_1a_2\ldots
Here is the decimal separator, i ...
of its
reciprocal
Reciprocal may refer to:
In mathematics
* Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal''
* Reciprocal polynomial, a polynomial obtained from another pol ...
, 0.333..., is unique. 3 is a
twin prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin p ...
with
5, and a
cousin prime
In number theory, cousin primes are prime numbers that differ by four. Compare this with twin primes, pairs of prime numbers that differ by two, and sexy primes, pairs of prime numbers that differ by six.
The cousin primes (sequences and in O ...
with
7, and the only known number
such that
! - 1 and
! + 1 are prime, as well as the only prime number
such that
- 1 yields another prime number,
2. A
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
is made of three
sides. It is the smallest non-self-intersecting
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
and the only polygon not to have proper
diagonals
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ� ...
. When doing quick estimates, 3 is a rough approximation of
, 3.1415..., and a very rough approximation of
''e'', 2.71828...
3 is the first
Mersenne prime
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17 ...
, as well as the second Mersenne prime exponent and the second
double Mersenne prime exponent, for 7 and
127 127 may refer to:
*127 (number), a natural number
*AD 127, a year in the 2nd century AD
*127 BC, a year in the 2nd century BC
*127 (band), an Iranian band
See also
*List of highways numbered 127
Route 127 or Highway 127 can refer to multiple roads ...
, respectively. 3 is also the first of five known
Fermat prime
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
:F_ = 2^ + 1,
where ''n'' is a non-negative integer. The first few Fermat numbers are:
: 3, 5, 17, 257, 65537, 4294967 ...
s, which include 5,
17,
257
__NOTOC__
Year 257 ( CCLVII) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Valerianus and Gallienus (or, less frequently, year 1 ...
, and
65537
65537 is the integer after 65536 and before 65538.
In mathematics
65537 is the largest known prime number of the form 2^ +1 (n = 4). Therefore, a regular polygon with 65537 sides is constructible with compass and unmarked straightedge. Johann ...
. It is the second
Fibonacci prime
A Fibonacci prime is a Fibonacci number that is prime, a type of integer sequence prime.
The first Fibonacci primes are :
: 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, ....
Known Fibonacci primes
It is not known wh ...
(and the second
Lucas prime
The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci nu ...
), the second
Sophie Germain prime
In number theory, a prime number ''p'' is a if 2''p'' + 1 is also prime. The number 2''p'' + 1 associated with a Sophie Germain prime is called a . For example, 11 is a Sophie Germain prime and 2 × 11 +  ...
, and the second
factorial prime
A factorial prime is a prime number that is one less or one more than a factorial (all factorials greater than 1 are even).
The first 10 factorial primes (for ''n'' = 1, 2, 3, 4, 6, 7, 11, 12, 14) are :
: 2 (0! +& ...
, as it is equal to 2! + 1.
3 is the second and only prime
triangular number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots i ...
, and
Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
proved that every integer is the sum of at most 3
triangular numbers
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in ...
.
3 is the number of non-collinear points needed to determine a
plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes'' ...
and a
circle
A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
.
Three is the only prime which is one less than a
perfect square. Any other number which is
− 1 for some integer
is not prime, since it is (
− 1)(
+ 1). This is true for 3 as well (with
= 2), but in this case the smaller factor is 1. If
is greater than 2, both
− 1 and
+ 1 are greater than 1 so their product is not prime.
A
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called '' cardinal ...
is
divisible
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
by three if the
sum of its digits in
base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any
permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or p ...
of its digits) is also divisible by three. For instance, 1368 and its reverse 8631 are both divisible by three (and so are 1386, 3168, 3186, 3618, etc.). See also
Divisibility rule
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any ra ...
. This works in
base 10
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral ...
and in any
positional numeral system
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
whose
base divided by three leaves a remainder of one (bases 4, 7, 10, etc.).
Three of the five
Platonic solids
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
have triangular faces – the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
, the
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at e ...
, and the
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
. Also, three of the five Platonic solids have
vertices where three faces meet – the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ...
, the
hexahedron
A hexahedron (plural: hexahedra or hexahedrons) or sexahedron (plural: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square
In Euclidean geometry, a square is a re ...
(
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the on ...
), and the
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
. Furthermore, only three different types of
polygons
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
comprise the faces of the five Platonic solids – the
triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non- colli ...
, the
square
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
, and the
pentagon
In geometry, a pentagon (from the Greek language, Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is ...
.
There are only three distinct 4×4
panmagic square A pandiagonal magic square or panmagic square (also diabolic square, diabolical square or diabolical magic square) is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the squar ...
s.
According to
Pythagoras
Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politic ...
and the
Pythagorean school, the number 3, which they called ''triad'', is the noblest of all digits, as it is the only number to equal the sum of all the terms below it, and the only number whose sum with those below equals the product of them and itself.
There are three finite convex
uniform polytope groups in three dimensions, aside from the infinite families of
prisms and
antiprisms
In geometry, an antiprism or is a polyhedron composed of two parallel direct copies (not mirror images) of an polygon, connected by an alternating band of triangles. They are represented by the Conway notation .
Antiprisms are a subclass ...
: the
tetrahedral group
150px, A regular tetrahedron, an example of a solid with full tetrahedral symmetry
A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection ...
, the
octahedral group
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedr ...
, and the
icosahedral group
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of th ...
. In dimensions
⩾ 5, there are only three regular polytopes: the
-
simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension ...
es,
-
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the on ...
s, and
-
orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
es. In dimensions
⩾
9, the only three uniform polytope families, aside from the numerous infinite
proprism
In geometry of 4 dimensions or higher, a proprism is a polytope resulting from the Cartesian product of two or more polytopes, each of two dimensions or higher. The term was coined by John Horton Conway for ''product prism''. The dimension of the s ...
atic families, are the
simplex,
cubic, and
demihypercubic families. For
paracompact hyperbolic honeycombs, there are three groups in
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
s
6 and
9, or equivalently of ranks 7 and 10, with no other forms in higher dimensions. Of the final three groups, the largest and most important is
, that is associated with an important
Kac–Moody Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
.
The
trisection of the angle
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and ...
was one of the three famous problems of antiquity.
Numeral systems
There is some evidence to suggest that early man may have used counting systems which consisted of "One, Two, Three" and thereafter "Many" to describe counting limits. Early peoples had a word to describe the quantities of one, two, and three but any quantity beyond was simply denoted as "Many". This is most likely based on the prevalence of this phenomenon among people in such disparate regions as the deep Amazon and Borneo jungles, where western civilization's explorers have historical records of their first encounters with these indigenous people.
List of basic calculations
Science
*The Roman numeral III stands for
giant star
A giant star is a star with substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature.Giant star, entry in ''Astronomy Encyclopedia'', ed. Patrick Moore, New York: Oxford University Press ...
in the
Yerkes spectral classification scheme
In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction grati ...
.
*Three is the