127 (number)
127 (one hundred ndtwenty-seven) is the natural number following 126 and preceding 128. It is also a prime number. In mathematics *As a Mersenne prime, 127 is related to the perfect number 8128. 127 is also the largest known Mersenne prime exponent for a Mersenne number, 2^-1, which is also a Mersenne prime. It was discovered by Édouard Lucas in 1876 and held the record for the largest known prime for 75 years. **2^-1 is the largest prime ever discovered by hand calculations as well as the largest known double Mersenne prime. ** Furthermore, 127 is equal to 2^-1, and 7 is equal to 2^-1, and 3 is the smallest Mersenne prime, making 7 the smallest double Mersenne prime and 127 the smallest triple Mersenne prime. *There are a total of 127 prime numbers between 2,000 and 3,000. *127 is also a cuban prime of the form p=\frac, x=y+1. The next prime is 131, with which it comprises a cousin prime. Because the next odd number, 129, is a semiprime, 127 is a Chen prime. 127 i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiprime
In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes, since they include two primes, or second numbers, by analogy with how "prime" means "first". Alternatively non-prime semiprimes are called almost-prime numbers, specifically the "2-almost-prime" biprime and "3-almost-prime" triprime Examples and variations The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case k=2 of the k- almost primes, numbers with exactly k prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). These are: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Delete Character
The delete control character (also called DEL or rubout) is the last character in the ASCII repertoire, with the code 127. It is supposed to do nothing and was designed to erase incorrect characters on paper tape. It is denoted as in caret notation and is in Unicode. Terminal emulators may produce DEL when key or or are typed. History This code was originally used to mark deleted characters on punched tape, since any character could be changed to all 1s by punching holes everywhere. If a character was punched erroneously, punching out all seven bits caused this position to be ignored or deleted. In hexadecimal, this is 7F to rub out 7 bits ( FF to rubout 8 bits was used for 8-bit codes). This character could also be used as padding to slow down printing after newlines, though the all-zero NUL was more often used. The Teletype Model 33 provided a key labelled to punch this character (after the user backed up the tape using another button), and did not provide a key th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
43 (number)
43 (forty-three) is the natural number following 42 (number), 42 and preceding 44 (number), 44. Mathematics 43 is a prime number, and a twin prime of 41 (number), 41. 43 is the smallest prime that is not a Chen prime. 43 is also a Wagstaff prime, and a Heegner number. 43 is the fourth term of Sylvester's sequence. 43 is the largest prime which divides the order of the Janko group J4, Janko group J4. Netherlands, Dutch mathematician Hendrik Lenstra wrote a mathematical research paper discussing the properties of the number, titled ''Ode to the number 43.'' Notes Further reading Hendrik Lenstra, Lenstra, Hendrik (2009)''Ode to the number 43'' (In Dutch). Nieuw Archief voor Wiskunde, Nieuw Arch. Wiskd. Amsterdam, NL: Koninklijk Wiskundig Genootschap (5) 10, No. 4: 240-244. {{Integers, zero Integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime number, prime, or the Unit (ring theory), unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive Integers
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like jersey numbers on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Friedman Number
A Friedman number is an integer, which represented in a given numeral system, is the result of a non-trivial expression using all its own digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷), additive inverses, parentheses, exponentiation, and concatenation. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the decimal numeral system, since 347 = 73 + 4. The decimal Friedman numbers are: :25, 121, 125, 126, 127, 128, 153, 216, 289, 343, 347, 625, 688, 736, 1022, 1024, 1206, 1255, 1260, 1285, 1296, 1395, 1435, 1503, 1530, 1792, 1827, 2048, 2187, 2349, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2592, 2737, 2916, ... . Friedman numbers are named afteErich Friedman a now-retired mathematics professor at Stetson University and recreational mathematics ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binary Number
A binary number is a number expressed in the Radix, base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" (zero) and "1" (one). A ''binary number'' may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an integer by a power of two. The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computer, computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation. History The modern binary number system was studied in Europe in the 16th and 17th centuries by Thoma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonary
A ternary numeral system (also called base 3 or trinary) has three as its base. Analogous to a bit, a ternary digit is a trit (trinary digit). One trit is equivalent to log2 3 (about 1.58496) bits of information. Although ''ternary'' most often refers to a system in which the three digits are all non–negative numbers; specifically , , and , the adjective also lends its name to the balanced ternary system; comprising the digits −1, 0 and +1, used in comparison logic and ternary computers. Comparison to other bases Representations of integer numbers in ternary do not get uncomfortably lengthy as quickly as in binary. For example, decimal 365 or senary corresponds to binary (nine bits) and to ternary (six digits). However, they are still far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27). : : : As for rational n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Palindromic Prime
In mathematics, a palindromic prime (sometimes called a palprime) is a prime number that is also a palindromic number. Palindromicity depends on the base of the number system and its notational conventions, while primality is independent of such concerns. The first few decimal palindromic primes are: : 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, … Except for 11, all palindromic primes have an odd number of digits, because the divisibility test for 11 tells us that every palindromic number with an even number of digits is a multiple of 11. It is not known if there are infinitely many palindromic primes in base 10. For any base, almost all palindromic numbers are composite, i.e. the ratio between palindromic composites and all palindromes less than ''n'' tends to 1. A few decorative examples do however exist; in base 10 the following are primes: 11, 122333221, and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motzkin Number
In mathematics, the th Motzkin number is the number of different ways of drawing non-intersecting chords between points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory. The Motzkin numbers M_n for n = 0, 1, \dots form the sequence: : 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, ... Examples The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle (): : The following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle (): : Properties The Motzkin numbers satisfy the recurrence relations :M_=M_+\sum_^M_iM_=\fracM_+\fracM_. The Motzkin numbers can be expressed in terms of binomial coefficients and Catalan numbers: :M_n=\sum_^ \binom C_k, and inversely, :C_=\sum_^ \binom M_k This gives :\sum_^C_ = 1 + \sum_^ \binom M_. The generating function m(x) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |